Lee Hyungwoo, Kim Najung, Kim Na Hee, Chung Hyewon, Kim Hyung Chan
Department of Ophthalmology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea ; and.
Kong Eye Hospital, Seoul, Republic of Korea .
Retina. 2025 Jun 1;45(6):1184-1191. doi: 10.1097/IAE.0000000000004409.
Predicting long-term anatomical responses in neovascular age-related macular degeneration patients is critical for patient-specific management. This study validates a generative deep learning model to predict 12-month posttreatment optical coherence tomography (OCT) images and evaluates the impact of incorporating clinical data on predictive performance.
A total of 533 eyes from 513 treatment-naïve neovascular age-related macular degeneration patients were analyzed. A conditional generative adversarial network served as the baseline model, generating 12-month OCT images using pretreatment OCT, fluorescein angiography, and indocyanine green angiography. We then sequentially added OCT after three loading doses, baseline visual acuity, treatment regimen (pro re nata or treat-and-extend), drug type, and switching events. The generated and patient OCT images were compared for intraretinal fluid, subretinal fluid, pigment epithelial detachment, and subretinal hyperreflective material, both qualitatively and quantitatively.
The baseline model achieved acceptable accuracy for 4 macular fluid compartments (range 0.74-0.96). Incorporating OCT after loading doses and other clinical parameters improved accuracy (range 0.91-0.98). With all the clinical inputs, the model achieved 92% accuracy in distinguishing wet macular status from dry macular status. The segmented fluid compartments in the generated images correlated positively with those in the patient images.
Integrating clinical and treatment data, particularly OCT data after loading doses, significantly enhanced the 12-month predictive performance of conditional generative adversarial networks. This approach can help clinicians anticipate anatomical outcomes and guide personalized, long-term neovascular age-related macular degeneration treatment strategies.
预测新生血管性年龄相关性黄斑变性患者的长期解剖学反应对于个体化治疗管理至关重要。本研究验证了一种生成式深度学习模型,以预测治疗后12个月的光学相干断层扫描(OCT)图像,并评估纳入临床数据对预测性能的影响。
对513例初治的新生血管性年龄相关性黄斑变性患者的533只眼进行了分析。一个条件生成对抗网络作为基线模型,使用治疗前的OCT、荧光素血管造影和吲哚菁绿血管造影生成12个月的OCT图像。然后,我们依次添加三次负荷剂量后的OCT、基线视力、治疗方案(按需或治疗并延长)、药物类型和换药事件。对生成的OCT图像和患者的OCT图像进行视网膜内液、视网膜下液、色素上皮脱离和视网膜下高反射物质的定性和定量比较。
基线模型对4个黄斑液腔的预测准确率达到了可接受水平(范围为0.74-0.96)。纳入负荷剂量后的OCT和其他临床参数提高了准确率(范围为0.91-0.98)。在所有临床输入数据的情况下,该模型区分湿性黄斑状态和干性黄斑状态的准确率达到92%。生成图像中分割出的液腔与患者图像中的液腔呈正相关。
整合临床和治疗数据,特别是负荷剂量后的OCT数据,显著提高了条件生成对抗网络对12个月情况的预测性能。这种方法可以帮助临床医生预测解剖学结果,并指导个性化的长期新生血管性年龄相关性黄斑变性治疗策略。