文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人工智能自动识别高血压及其继发效应:系统评价(2013-2023 年)。

Automatic identification of hypertension and assessment of its secondary effects using artificial intelligence: A systematic review (2013-2023).

机构信息

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.

出版信息

Comput Biol Med. 2024 Apr;172:108207. doi: 10.1016/j.compbiomed.2024.108207. Epub 2024 Feb 28.


DOI:10.1016/j.compbiomed.2024.108207
PMID:38489986
Abstract

Artificial Intelligence (AI) techniques are increasingly used in computer-aided diagnostic tools in medicine. These techniques can also help to identify Hypertension (HTN) in its early stage, as it is a global health issue. Automated HTN detection uses socio-demographic, clinical data, and physiological signals. Additionally, signs of secondary HTN can also be identified using various imaging modalities. This systematic review examines related work on automated HTN detection. We identify datasets, techniques, and classifiers used to develop AI models from clinical data, physiological signals, and fused data (a combination of both). Image-based models for assessing secondary HTN are also reviewed. The majority of the studies have primarily utilized single-modality approaches, such as biological signals (e.g., electrocardiography, photoplethysmography), and medical imaging (e.g., magnetic resonance angiography, ultrasound). Surprisingly, only a small portion of the studies (22 out of 122) utilized a multi-modal fusion approach combining data from different sources. Even fewer investigated integrating clinical data, physiological signals, and medical imaging to understand the intricate relationships between these factors. Future research directions are discussed that could build better healthcare systems for early HTN detection through more integrated modeling of multi-modal data sources.

摘要

人工智能 (AI) 技术在医学中的计算机辅助诊断工具中越来越多地被使用。这些技术也有助于在早期识别高血压 (HTN),因为它是一个全球性的健康问题。自动化 HTN 检测使用社会人口统计学、临床数据和生理信号。此外,还可以使用各种成像方式来识别继发性 HTN 的迹象。本系统评价检查了与自动化 HTN 检测相关的工作。我们从临床数据、生理信号和融合数据(两者的组合)中识别用于开发 AI 模型的数据集、技术和分类器。还回顾了用于评估继发性 HTN 的基于图像的模型。大多数研究主要利用了单一模式方法,例如生物信号(例如心电图、光体积描记法)和医学成像(例如磁共振血管造影、超声)。令人惊讶的是,只有一小部分研究(122 项研究中的 22 项)利用了多模态融合方法,结合来自不同来源的数据。更少的研究调查了整合临床数据、生理信号和医学成像,以了解这些因素之间的复杂关系。讨论了未来的研究方向,通过更集成的多模态数据源建模,可以为早期 HTN 检测建立更好的医疗保健系统。

相似文献

[1]
Automatic identification of hypertension and assessment of its secondary effects using artificial intelligence: A systematic review (2013-2023).

Comput Biol Med. 2024-4

[2]
Short-Term Memory Impairment

2025-1

[3]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[4]
The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia.

Therap Adv Gastroenterol. 2025-6-23

[5]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[6]
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.

Cochrane Database Syst Rev. 2015-9-29

[7]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

[8]
Contrast-enhanced ultrasound using SonoVue® (sulphur hexafluoride microbubbles) compared with contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging for the characterisation of focal liver lesions and detection of liver metastases: a systematic review and cost-effectiveness analysis.

Health Technol Assess. 2013-4

[9]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[10]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

引用本文的文献

[1]
Mapping the landscape of machine learning in chronic disease management: A comprehensive bibliometric study.

Digit Health. 2025-7-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索