Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.
Comput Biol Med. 2024 Apr;172:108207. doi: 10.1016/j.compbiomed.2024.108207. Epub 2024 Feb 28.
Artificial Intelligence (AI) techniques are increasingly used in computer-aided diagnostic tools in medicine. These techniques can also help to identify Hypertension (HTN) in its early stage, as it is a global health issue. Automated HTN detection uses socio-demographic, clinical data, and physiological signals. Additionally, signs of secondary HTN can also be identified using various imaging modalities. This systematic review examines related work on automated HTN detection. We identify datasets, techniques, and classifiers used to develop AI models from clinical data, physiological signals, and fused data (a combination of both). Image-based models for assessing secondary HTN are also reviewed. The majority of the studies have primarily utilized single-modality approaches, such as biological signals (e.g., electrocardiography, photoplethysmography), and medical imaging (e.g., magnetic resonance angiography, ultrasound). Surprisingly, only a small portion of the studies (22 out of 122) utilized a multi-modal fusion approach combining data from different sources. Even fewer investigated integrating clinical data, physiological signals, and medical imaging to understand the intricate relationships between these factors. Future research directions are discussed that could build better healthcare systems for early HTN detection through more integrated modeling of multi-modal data sources.
人工智能 (AI) 技术在医学中的计算机辅助诊断工具中越来越多地被使用。这些技术也有助于在早期识别高血压 (HTN),因为它是一个全球性的健康问题。自动化 HTN 检测使用社会人口统计学、临床数据和生理信号。此外,还可以使用各种成像方式来识别继发性 HTN 的迹象。本系统评价检查了与自动化 HTN 检测相关的工作。我们从临床数据、生理信号和融合数据(两者的组合)中识别用于开发 AI 模型的数据集、技术和分类器。还回顾了用于评估继发性 HTN 的基于图像的模型。大多数研究主要利用了单一模式方法,例如生物信号(例如心电图、光体积描记法)和医学成像(例如磁共振血管造影、超声)。令人惊讶的是,只有一小部分研究(122 项研究中的 22 项)利用了多模态融合方法,结合来自不同来源的数据。更少的研究调查了整合临床数据、生理信号和医学成像,以了解这些因素之间的复杂关系。讨论了未来的研究方向,通过更集成的多模态数据源建模,可以为早期 HTN 检测建立更好的医疗保健系统。
2025-1
Cochrane Database Syst Rev. 2022-5-20
Therap Adv Gastroenterol. 2025-6-23
Health Technol Assess. 2006-9
Cochrane Database Syst Rev. 2015-9-29
Cochrane Database Syst Rev. 2023-11-15
Cochrane Database Syst Rev. 2024-10-17