文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

绘制机器学习在慢性病管理中的全景:一项全面的文献计量学研究。

Mapping the landscape of machine learning in chronic disease management: A comprehensive bibliometric study.

作者信息

Shen Shiying, Qi Wenhao, Li Sixie, Zeng Jianwen, Liu Xin, Zhu Xiaohong, Dong Chaoqun, Wang Bin, Xu Qian, Cao Shihua

机构信息

School of Nursing, Hangzhou Normal University, Hangzhou, China.

School of Public Health, Angeles University Foundation, Angeles, Philippines.

出版信息

Digit Health. 2025 Jul 23;11:20552076251361614. doi: 10.1177/20552076251361614. eCollection 2025 Jan-Dec.


DOI:10.1177/20552076251361614
PMID:40727621
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12301648/
Abstract

OBJECTIVE: This study aims to reveal global advancements and trends in machine learning (ML) for chronic disease management through a comprehensive bibliometric analysis, identifying research priorities to guide deeper exploration in the future. METHODS: Relevant documents on ML and chronic disease management were retrieved from the core Web of Science database. Visual analyses of publication volume, research institutions, and countries were conducted using CiteSpace, VOSviewer, RStudio, and other software. An expert panel further analyzed the scale, trends, and potential connections between various ML algorithms and chronic diseases. RESULTS: A total of 1,242 documents were included in this study. The findings indicate a continuous rise in studies on ML in chronic disease management, with the United States (n = 303, 23.5%) and China (n = 259, 20.1%) as primary research contributors. Logistic regression (n = 459) remains the most widely used algorithm, while neural networks (n = 183) show promising potential. Research hotspots are concentrated in diabetes and cardiovascular disease, focusing mainly on risk prediction, disease diagnosis, and personalized treatment. CONCLUSION: ML is rapidly integrating into personalized medicine, real-time monitoring, and multimodal data fusion. However, challenges such as limited collaboration, weak model generalization, and data privacy persist. Future efforts should prioritize algorithm optimization and multisource data integration to advance clinical applications.

摘要

目的:本研究旨在通过全面的文献计量分析揭示机器学习(ML)在慢性病管理方面的全球进展和趋势,确定研究重点以指导未来更深入的探索。 方法:从科学网核心数据库中检索有关ML和慢性病管理的相关文献。使用CiteSpace、VOSviewer、RStudio等软件对出版物数量、研究机构和国家进行可视化分析。一个专家小组进一步分析了各种ML算法与慢性病之间的规模、趋势和潜在联系。 结果:本研究共纳入1242篇文献。研究结果表明,慢性病管理中关于ML的研究持续增加,美国(n = 303,23.5%)和中国(n = 259,20.1%)是主要的研究贡献者。逻辑回归(n = 459)仍然是使用最广泛的算法,而神经网络(n = 183)显示出有前景的潜力。研究热点集中在糖尿病和心血管疾病,主要侧重于风险预测、疾病诊断和个性化治疗。 结论:ML正在迅速融入个性化医疗、实时监测和多模态数据融合。然而,合作有限、模型泛化能力弱和数据隐私等挑战仍然存在。未来的工作应优先考虑算法优化和多源数据整合,以推进临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/153804c3a15f/10.1177_20552076251361614-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/ecc307055822/10.1177_20552076251361614-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/14b817e545f3/10.1177_20552076251361614-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/e21ce577dcb9/10.1177_20552076251361614-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/252744accb17/10.1177_20552076251361614-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/d3703fb54992/10.1177_20552076251361614-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/842f856be72a/10.1177_20552076251361614-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/5718753961e2/10.1177_20552076251361614-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/80480c2653a6/10.1177_20552076251361614-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/bac7a42efbb7/10.1177_20552076251361614-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/45ce90f6ab02/10.1177_20552076251361614-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/e272a58079c6/10.1177_20552076251361614-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/153804c3a15f/10.1177_20552076251361614-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/ecc307055822/10.1177_20552076251361614-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/14b817e545f3/10.1177_20552076251361614-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/e21ce577dcb9/10.1177_20552076251361614-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/252744accb17/10.1177_20552076251361614-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/d3703fb54992/10.1177_20552076251361614-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/842f856be72a/10.1177_20552076251361614-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/5718753961e2/10.1177_20552076251361614-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/80480c2653a6/10.1177_20552076251361614-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/bac7a42efbb7/10.1177_20552076251361614-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/45ce90f6ab02/10.1177_20552076251361614-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/e272a58079c6/10.1177_20552076251361614-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b90/12301648/153804c3a15f/10.1177_20552076251361614-fig12.jpg

相似文献

[1]
Mapping the landscape of machine learning in chronic disease management: A comprehensive bibliometric study.

Digit Health. 2025-7-23

[2]
Research status, hotspots and perspectives of artificial intelligence applied to pain management: a bibliometric and visual analysis.

Updates Surg. 2025-6-28

[3]
Data-driven trends in critical care informatics: a bibliometric analysis of global collaborations using the MIMIC database (2004-2024).

Comput Biol Med. 2025-9

[4]
The Use of Machine Learning for Analyzing Real-World Data in Disease Prediction and Management: Systematic Review.

JMIR Med Inform. 2025-6-19

[5]
Driving innovations in cancer research through spatial metabolomics: a bibliometric review of trends and hotspot.

Front Immunol. 2025-6-10

[6]
Comprehensive Global Analysis of Future Trends in Artificial Intelligence-Assisted Veterinary Medicine.

Vet Med Sci. 2025-5

[7]
A bibliometric analysis of research trends in mesenchymal stem cell therapy for neonatal bronchopulmonary dysplasia: 2004-2024.

Front Pediatr. 2025-6-3

[8]
Global research trends and hotspots in prognostic prediction models for pancreatic cancer: a bibliometric analysis.

Front Oncol. 2025-7-10

[9]
The Use of Deep Learning and Machine Learning on Longitudinal Electronic Health Records for the Early Detection and Prevention of Diseases: Scoping Review.

J Med Internet Res. 2024-8-20

[10]
A Systematic Review and Bibliometric Analysis of Applications of Artificial Intelligence and Machine Learning in Vascular Surgery.

Ann Vasc Surg. 2022-9

本文引用的文献

[1]
Pathways to chronic disease detection and prediction: Mapping the potential of machine learning to the pathophysiological processes while navigating ethical challenges.

Chronic Dis Transl Med. 2024-6-9

[2]
Global bibliometric mapping of the research trends in artificial intelligence-based digital pathology for lung cancer over the past two decades.

Digit Health. 2024-9-2

[3]
A neural network approach to predict opioid misuse among previously hospitalized patients using electronic health records.

PLoS One. 2024

[4]
Patterns of Ownership and Usage of Wearable Devices in the United States, 2020-2022: Survey Study.

J Med Internet Res. 2024-7-26

[5]
US Renal Data System 2023 Annual Data Report: Epidemiology of Kidney Disease in the United States.

Am J Kidney Dis. 2024-4

[6]
Automatic identification of hypertension and assessment of its secondary effects using artificial intelligence: A systematic review (2013-2023).

Comput Biol Med. 2024-4

[7]
How AI is being used to accelerate clinical trials.

Nature. 2024-3

[8]
Diagnostic Accuracy of Artificial Intelligence-Based Automated Diabetic Retinopathy Screening in Real-World Settings: A Systematic Review and Meta-Analysis.

Am J Ophthalmol. 2024-7

[9]
Barriers and facilitators to health technology adoption by older adults with chronic diseases: an integrative systematic review.

BMC Public Health. 2024-2-16

[10]
Understanding Liability Risk from Using Health Care Artificial Intelligence Tools.

N Engl J Med. 2024-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索