i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
Fachbereich Chemie, Abteilung Biochemie, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany.
Redox Biol. 2024 May;71:103122. doi: 10.1016/j.redox.2024.103122. Epub 2024 Mar 10.
Typical two-cysteine peroxiredoxins (2-Cys-PRXs) are HO-metabolizing enzymes whose activity relies on two cysteine residues. Protists of the family Trypanosomatidae invariably express one cytosolic 2-Cys-PRX (cPRX1). However, the Leishmaniinae sub-family features an additional isoform (cPRX2), almost identical to cPRX1, except for the lack of an elongated C-terminus with a Tyr-Phe (YF) motif. Previously, cytosolic PRXs were considered vital components of the trypanosomatid antioxidant machinery. Here, we shed new light on the properties, functions and relevance of cPRXs from the human pathogen Leishmania infantum. We show first that LicPRX1 is sensitive to inactivation by hyperoxidation, mirroring other YF-containing PRXs participating in redox signaling. Using genetic fusion constructs with roGFP2, we establish that LicPRX1 and LicPRX2 can act as sensors for HO and oxidize protein thiols with implications for signal transduction. Third, we show that while disrupting the LicPRX-encoding genes increases susceptibility of L. infantum promastigotes to external HOin vitro, both enzymes are dispensable for the parasites to endure the macrophage respiratory burst, differentiate into amastigotes and initiate in vivo infections. This study introduces a novel perspective on the functions of trypanosomatid cPRXs, exposing their dual roles as both peroxidases and redox sensors. Furthermore, the discovery that Leishmania can adapt to the absence of both enzymes has significant implications for our understanding of Leishmania infections and their treatment. Importantly, it questions the conventional notion that the oxidative response of macrophages during phagocytosis is a major barrier to infection and the suitability of cPRXs as drug targets for leishmaniasis.
典型的双半胱氨酸过氧化物酶(2-Cys-PRXs)是 HO 代谢酶,其活性依赖于两个半胱氨酸残基。动基体目(Trypanosomatidae)的原生动物始终表达一种细胞质 2-Cys-PRX(cPRX1)。然而,利什曼亚科(Leishmaniinae)亚科具有另一种同工酶(cPRX2),除了缺乏带有 Tyr-Phe(YF)基序的长 C 末端外,与 cPRX1 几乎完全相同。以前,细胞质 PRX 被认为是动基体生物抗氧化机制的重要组成部分。在这里,我们揭示了人病原体利什曼原虫(Leishmania infantum)中细胞质 PRXs 的特性、功能和相关性。我们首先表明,LicPRX1 对超氧化失活敏感,这与参与氧化还原信号的其他含有 YF 的 PRX 一致。使用带有 roGFP2 的遗传融合构建体,我们确定 LicPRX1 和 LicPRX2 可以作为 HO 的传感器,并氧化蛋白质巯基,这对信号转导具有影响。第三,我们表明,虽然破坏编码 LicPRX 的基因会增加 L. infantum 前鞭毛体对体外 HO 的敏感性,但这两种酶对于寄生虫耐受巨噬细胞呼吸爆发、分化为无鞭毛体和启动体内感染都是可有可无的。这项研究为动基体生物 cPRXs 的功能引入了一个新的视角,揭示了它们作为过氧化物酶和氧化还原传感器的双重作用。此外,发现利什曼原虫可以适应两种酶的缺失,这对我们理解利什曼原虫感染及其治疗具有重要意义。重要的是,它质疑了巨噬细胞吞噬过程中的氧化反应是感染的主要障碍以及 cPRXs 作为利什曼病药物靶点的适用性的传统观念。