Suppr超能文献

2-Cys 过氧化物酶中新型的超氧化抗性基序。

Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins.

机构信息

From the Center for Structural Biology, Department of Biochemistry.

Wake Forest Baptist Comprehensive Cancer Center, and.

出版信息

J Biol Chem. 2018 Jul 27;293(30):11901-11912. doi: 10.1074/jbc.RA117.001690. Epub 2018 Jun 8.

Abstract

2-Cys peroxiredoxins (Prxs) modulate hydrogen peroxide (HO)-mediated cell signaling. At high HO levels, eukaryotic Prxs can be inactivated by hyperoxidation and are classified as sensitive Prxs. In contrast, prokaryotic Prxs are categorized as being resistant to hyperoxidation and lack the GGLG and C-terminal YF motifs present in the sensitive Prxs. Additional molecular determinants that account for the subtle differences in the susceptibility to hyperoxidation remain to be identified. A comparison of a new, 2.15-Å-resolution crystal structure of Prx2 in the oxidized, disulfide-bonded state with the hyperoxidized structure of Prx2 and Prx1 in complex with sulfiredoxin revealed three structural regions that rearrange during catalysis. With these regions in hand, focused sequence analyses were performed comparing sensitive and resistant Prx groups. From this combinatorial approach, we discovered two novel hyperoxidation resistance motifs, motifs A and B, which were validated using mutagenesis of sensitive human Prxs and resistant serovar Typhimurium AhpC. Introduction and removal of these motifs, respectively, resulted in drastic changes in the sensitivity to hyperoxidation with Prx1 becoming 100-fold more resistant to hyperoxidation and AhpC becoming 800-fold more sensitive to hyperoxidation. The increased sensitivity of the latter AhpC variant was also confirmed These results support the function of motifs A and B as primary drivers for tuning the sensitivity of Prxs to different levels of HO, thus enabling the initiation of variable signaling or antioxidant responses in cells.

摘要

2-Cys 过氧化物酶(Prx)调节过氧化氢(HO)介导的细胞信号转导。在高 HO 水平下,真核 Prx 可被过氧化而失活,并被归类为敏感 Prx。相比之下,原核 Prx被归类为对过氧化有抗性,并且缺乏存在于敏感 Prx 中的 GGLG 和 C 末端 YF 基序。导致对过氧化敏感性差异的其他分子决定因素仍有待确定。通过比较新的、氧化状态下的 2.15 Å分辨率 Prx2 晶体结构与过氧化的 Prx2 和与硫氧还蛋白复合物的 Prx1 结构,揭示了在催化过程中重新排列的三个结构区域。有了这些区域,我们对敏感和抗性 Prx 组进行了重点序列分析。通过这种组合方法,我们发现了两个新的过氧化抗性基序 A 和 B,并通过对敏感的人 Prx 和抗性血清型鼠伤寒 AhpC 的突变验证了它们的有效性。分别引入和去除这些基序,导致 Prx1 对过氧化的敏感性发生了剧烈变化,对过氧化的抗性增加了 100 倍,而 AhpC 对过氧化的敏感性增加了 800 倍。后者 AhpC 变体的增加敏感性也得到了证实。这些结果支持基序 A 和 B 作为调节 Prx 对不同 HO 水平敏感性的主要驱动力的功能,从而使细胞能够启动不同的信号转导或抗氧化反应。

相似文献

1
Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins.
J Biol Chem. 2018 Jul 27;293(30):11901-11912. doi: 10.1074/jbc.RA117.001690. Epub 2018 Jun 8.
2
The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1.
J Biol Chem. 2019 Sep 20;294(38):14055-14067. doi: 10.1074/jbc.RA119.008825. Epub 2019 Jul 30.
3
Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation.
J Biol Chem. 2013 Oct 11;288(41):29714-23. doi: 10.1074/jbc.M113.473470. Epub 2013 Sep 3.
4
Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine.
J Biol Chem. 2013 May 17;288(20):14170-14177. doi: 10.1074/jbc.M113.460881. Epub 2013 Mar 29.
5
Differential oxidation processes of peroxiredoxin 2 dependent on the reaction with several peroxides in human red blood cells.
Biochem Biophys Res Commun. 2019 Oct 22;518(4):685-690. doi: 10.1016/j.bbrc.2019.08.108. Epub 2019 Aug 28.
6
Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation.
Biochem J. 2016 Feb 15;473(4):411-21. doi: 10.1042/BJ20150572. Epub 2015 Nov 27.
8
9
Hyperoxidation of Peroxiredoxins: Gain or Loss of Function?
Antioxid Redox Signal. 2018 Mar 1;28(7):574-590. doi: 10.1089/ars.2017.7214. Epub 2017 Sep 8.
10
The Peroxiredoxin Family: An Unfolding Story.
Subcell Biochem. 2017;83:127-147. doi: 10.1007/978-3-319-46503-6_5.

引用本文的文献

3
Overoxidation and Oligomerization of Cytosolic and Mitochondrial Peroxiredoxins.
Pathogens. 2023 Oct 23;12(10):1273. doi: 10.3390/pathogens12101273.
4
Biophysical tools to study the oligomerization dynamics of Prx1-class peroxiredoxins.
Biophys Rev. 2023 Jun 15;15(4):601-609. doi: 10.1007/s12551-023-01076-3. eCollection 2023 Aug.
5
Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte.
Antioxidants (Basel). 2023 Apr 27;12(5):1012. doi: 10.3390/antiox12051012.
6
The Role of Peroxiredoxins in Cancer Development.
Biology (Basel). 2023 Apr 28;12(5):666. doi: 10.3390/biology12050666.
7
Disulfide-Bond-Induced Structural Frustration and Dynamic Disorder in a Peroxiredoxin from MAS NMR.
J Am Chem Soc. 2023 May 17;145(19):10700-10711. doi: 10.1021/jacs.3c01200. Epub 2023 May 4.
9
Native state fluctuations in a peroxiredoxin active site match motions needed for catalysis.
Structure. 2022 Feb 3;30(2):278-288.e3. doi: 10.1016/j.str.2021.10.001. Epub 2021 Oct 21.
10
Prdx1 Interacts with ASK1 upon Exposure to HO and Independently of a Scaffolding Protein.
Antioxidants (Basel). 2021 Jun 30;10(7):1060. doi: 10.3390/antiox10071060.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Peroxiredoxin Catalysis at Atomic Resolution.
Structure. 2016 Oct 4;24(10):1668-1678. doi: 10.1016/j.str.2016.07.012. Epub 2016 Sep 1.
4
Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases.
Pharmacol Ther. 2016 Jul;163:1-23. doi: 10.1016/j.pharmthera.2016.03.018. Epub 2016 Apr 26.
6
Circadian redox oscillations and metabolism.
Trends Endocrinol Metab. 2015 Aug;26(8):430-7. doi: 10.1016/j.tem.2015.05.012. Epub 2015 Jun 22.
7
Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling.
Trends Biochem Sci. 2015 Aug;40(8):435-45. doi: 10.1016/j.tibs.2015.05.001. Epub 2015 Jun 9.
8
Incidence and physiological relevance of protein thiol switches.
Biol Chem. 2015 May;396(5):389-99. doi: 10.1515/hsz-2014-0314.
9
Tuning of peroxiredoxin catalysis for various physiological roles.
Biochemistry. 2014 Dec 16;53(49):7693-705. doi: 10.1021/bi5013222. Epub 2014 Dec 1.
10
Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling.
Nat Chem Biol. 2015 Jan;11(1):64-70. doi: 10.1038/nchembio.1695. Epub 2014 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验