Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States.
Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States.
ACS Appl Mater Interfaces. 2024 Mar 27;16(12):14405-14420. doi: 10.1021/acsami.3c16534. Epub 2024 Mar 15.
Developing protein confinement platforms is an attractive research area that not only promotes protein delivery but also can result in artificial environment mimicking of the cellular one, impacting both the controlled release of proteins and the fundamental protein biophysics. Polymeric nanoparticles (PNPs) are attractive platforms to confine proteins due to their superior biocompatibility, low cytotoxicity, and controllable release under external stimuli. However, loading proteins into PNPs can be challenging due to the potential protein structural perturbation upon contacting the interior of PNPs. In this work, we developed a novel approach to encapsulate proteins in PNPs with the assistance of the zeolitic imidazolate framework (ZIF). Here, ZIF offers an additional protection layer to the target protein by forming the protein@ZIF composite via aqueous-phase cocrystallization. We demonstrated our platform using a model protein, lysozyme, and a widely studied PNP composed of poly(ethylene glycol)-poly(lactic--glycolic acid) (PEG-PLGA). A comprehensive study via standard loading and release tests as well as various spectroscopic techniques was carried out on lysozyme loaded onto PEG-PLGA with and without ZIF protection. As compared with the direct protein encapsulation, an additional layer with ZIF prior to loading offered enhanced loading capacity, reduced leaching, especially in the initial stage, led to slower release kinetics, and reduced secondary structural perturbation. Meanwhile, the function, cytotoxicity, and cellular uptake of proteins encapsulated within the ZIF-bound systems are decent. Our results demonstrated the use of ZIF in assisting in protein encapsulation in PNPs and established the basis for developing more sophisticated protein encapsulation platforms using a combination of materials of diverse molecular architectures and disciplines. As such, we anticipate that the protein-encapsulated ZIF systems will serve as future polymer protein confinement and delivery platforms for both fundamental biophysics and biochemistry research and biomedical applications where protein delivery is needed to support therapeutics and/or nutrients.
开发蛋白质限制平台是一个很有吸引力的研究领域,不仅可以促进蛋白质的递送,还可以模拟细胞的人工环境,从而影响蛋白质的控制释放和基本的蛋白质生物物理学。由于具有优越的生物相容性、低细胞毒性以及在外部刺激下可控释放的特性,聚合物纳米粒子(PNP)是限制蛋白质的有吸引力的平台。然而,由于蛋白质在接触 PNP 内部时可能会发生潜在的蛋白质结构扰动,因此将蛋白质加载到 PNP 中具有挑战性。在这项工作中,我们开发了一种新方法,通过沸石咪唑酯骨架(ZIF)的协助将蛋白质封装在 PNP 中。在这里,ZIF 通过水相共结晶形成蛋白质@ZIF 复合物,为目标蛋白质提供了额外的保护层。我们使用模型蛋白质溶菌酶和由聚乙二醇-聚(乳酸-乙醇酸)(PEG-PLGA)组成的广泛研究的 PNP 来演示我们的平台。通过标准加载和释放测试以及各种光谱技术对带有和不带有 ZIF 保护的 PEG-PLGA 加载的溶菌酶进行了综合研究。与直接蛋白质封装相比,在加载之前使用 ZIF 进行额外的封装提供了更高的载药量、减少了泄漏,尤其是在初始阶段、导致了更慢的释放动力学以及减少了二级结构的扰动。同时,封装在 ZIF 结合系统内的蛋白质的功能、细胞毒性和细胞摄取都是良好的。我们的结果证明了 ZIF 在协助蛋白质封装在 PNP 中的作用,并为使用具有不同分子结构和学科的材料组合开发更复杂的蛋白质封装平台奠定了基础。因此,我们预计,蛋白质封装的 ZIF 系统将成为未来聚合物蛋白质限制和递送平台,用于基础生物物理学和生物化学研究以及需要蛋白质递送以支持治疗和/或营养的生物医学应用。