Lehr François-Xavier, Pavletić Bruno, Glatter Timo, Heimerl Thomas, Moeller Ralf, Niederholtmeyer Henrike
Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
NPJ Microgravity. 2024 Mar 15;10(1):30. doi: 10.1038/s41526-024-00378-4.
On-demand biomanufacturing has the potential to improve healthcare and self-sufficiency during space missions. Cell-free transcription and translation reactions combined with DNA blueprints can produce promising therapeutics like bacteriophages and virus-like particles. However, how space conditions affect the synthesis and self-assembly of such complex multi-protein structures is unknown. Here, we characterize the cell-free production of infectious bacteriophage T7 virions under simulated microgravity. Rotation in a 2D-clinostat increased the number of infectious particles compared to static controls. Quantitative analyses by mass spectrometry, immuno-dot-blot and real-time PCR showed no significant differences in protein and DNA contents, suggesting enhanced self-assembly of T7 phages in simulated microgravity. While the effects of genuine space conditions on the cell-free synthesis and assembly of bacteriophages remain to be investigated, our findings support the vision of a cell-free synthesis-enabled "astropharmacy".
按需生物制造有潜力在太空任务期间改善医疗保健和自给自足能力。无细胞转录和翻译反应与DNA蓝图相结合可以产生有前景的治疗剂,如噬菌体和病毒样颗粒。然而,太空条件如何影响这种复杂的多蛋白结构的合成和自组装尚不清楚。在这里,我们表征了在模拟微重力下传染性噬菌体T7病毒粒子的无细胞生产。与静态对照相比,在二维回转器中旋转增加了感染性颗粒的数量。通过质谱、免疫斑点印迹和实时PCR进行的定量分析表明,蛋白质和DNA含量没有显著差异,这表明在模拟微重力下T7噬菌体的自组装得到增强。虽然真实太空条件对噬菌体无细胞合成和组装的影响仍有待研究,但我们的发现支持了无细胞合成促成的“天体制药”愿景。