Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
Phys Rev E. 2024 Feb;109(2-1):024410. doi: 10.1103/PhysRevE.109.024410.
Intracellular ions, including sodium (Na^{+}), calcium (Ca^{2+}), and potassium (K^{+}), etc., accumulate slowly after a change of the state of the heart, such as a change of the heart rate. The goal of this study is to understand the roles of slow ion accumulation in the genesis of cardiac memory and complex action-potential duration (APD) dynamics that can lead to lethal cardiac arrhythmias. We carry out numerical simulations of a detailed action potential model of ventricular myocytes under normal and diseased conditions, which exhibit memory effects and complex APD dynamics. We develop a low-dimensional iterated map (IM) model to describe the dynamics of Na^{+}, Ca^{2+}, and APD and use it to uncover the underlying dynamical mechanisms. The development of the IM model is informed by simulation results under the normal condition. We then use the IM model to perform linear stability analyses and computer simulations to investigate the bifurcations and complex APD dynamics, which depend on the feedback loops between APD and intracellular Ca^{2+} and Na^{+} concentrations and the steepness of the APD response to the ion concentrations. When the feedback between APD and Ca^{2+} concentration is positive, a Hopf bifurcation leading to periodic oscillatory behavior occurs as the steepness of the APD response to the ion concentrations increases. The negative feedback loop between APD and Na^{+} concentration is required for the Hopf bifurcation. When the feedback between APD and Ca^{2+} concentration is negative, period-doubling bifurcations leading to high periodicity and chaos occurs. In this case, Na^{+} accumulation plays little role in the dynamics. Finally, we carry out simulations of the detailed action potential model under two diseased conditions, which exhibit steep APD responses to ion concentrations. Under both conditions, Hopf bifurcations leading to slow oscillations or period-doubling bifurcations leading to high periodicity and chaotic APD dynamics occur, depending on the strength of the ion pump-Na^{+}-Ca^{2+} exchanger. Using functions reconstructed from the simulation data, the IM model accurately captures the bifurcations and dynamics under the two diseased conditions. In conclusion, besides using computer simulations of a detailed high-dimensional action-potential model to investigate the effects of slow ion accumulation and short-term memory on bifurcations and genesis of complex APD dynamics in cardiac myocytes under diseased conditions, this study also provides a low-dimensional mathematical tool, i.e., the IM model, to allow stability analyses for uncovering the underlying mechanisms.
细胞内离子,包括钠(Na^{+})、钙(Ca^{2+})和钾(K^{+})等,在心脏状态改变后,如心率改变,会缓慢积累。本研究的目的是了解缓慢离子积累在心脏记忆的发生和导致致命性心律失常的复杂动作电位持续时间(APD)动力学中的作用。我们对心室肌细胞在正常和患病条件下的详细动作电位模型进行数值模拟,这些模型表现出记忆效应和复杂的 APD 动力学。我们开发了一个低维迭代映射(IM)模型来描述 Na^{+}、Ca^{2+}和 APD 的动力学,并利用它揭示潜在的动力学机制。IM 模型的开发是基于正常情况下的模拟结果。然后,我们使用 IM 模型进行线性稳定性分析和计算机模拟,以研究依赖于 APD 与细胞内 Ca^{2+}和 Na^{+}浓度之间的反馈环以及 APD 对离子浓度的响应陡峭度的分岔和复杂的 APD 动力学。当 APD 与 Ca^{2+}浓度之间的反馈为正,随着离子浓度对 APD 响应的陡峭度增加,会发生导致周期性振荡行为的 Hopf 分岔。APD 与 Na^{+}浓度之间的负反馈环是 Hopf 分岔所必需的。当 APD 与 Ca^{2+}浓度之间的反馈为负时,会发生导致高周期性和混沌的倍周期分岔。在这种情况下,Na^{+}积累对动力学的影响很小。最后,我们对表现出对离子浓度具有陡峭 APD 响应的两种病变条件下的详细动作电位模型进行模拟。在两种情况下,都会发生导致缓慢振荡的 Hopf 分岔或导致高周期性和混沌 APD 动力学的倍周期分岔,这取决于离子泵-Na^{+}-Ca^{2+}交换器的强度。使用从模拟数据中重建的函数,IM 模型准确地捕捉到了两种病变条件下的分岔和动力学。总之,除了使用详细的高维动作电位模型的计算机模拟来研究缓慢离子积累和短期记忆对心脏肌细胞在病变条件下的复杂 APD 动力学分岔和发生的影响外,本研究还提供了一个低维数学工具,即 IM 模型,允许进行稳定性分析以揭示潜在机制。