Suppr超能文献

细胞内离子积累在心脏疾病复杂动作电位动力学发生中的作用。

Intracellular ion accumulation in the genesis of complex action potential dynamics under cardiac diseases.

机构信息

Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.

出版信息

Phys Rev E. 2024 Feb;109(2-1):024410. doi: 10.1103/PhysRevE.109.024410.

Abstract

Intracellular ions, including sodium (Na^{+}), calcium (Ca^{2+}), and potassium (K^{+}), etc., accumulate slowly after a change of the state of the heart, such as a change of the heart rate. The goal of this study is to understand the roles of slow ion accumulation in the genesis of cardiac memory and complex action-potential duration (APD) dynamics that can lead to lethal cardiac arrhythmias. We carry out numerical simulations of a detailed action potential model of ventricular myocytes under normal and diseased conditions, which exhibit memory effects and complex APD dynamics. We develop a low-dimensional iterated map (IM) model to describe the dynamics of Na^{+}, Ca^{2+}, and APD and use it to uncover the underlying dynamical mechanisms. The development of the IM model is informed by simulation results under the normal condition. We then use the IM model to perform linear stability analyses and computer simulations to investigate the bifurcations and complex APD dynamics, which depend on the feedback loops between APD and intracellular Ca^{2+} and Na^{+} concentrations and the steepness of the APD response to the ion concentrations. When the feedback between APD and Ca^{2+} concentration is positive, a Hopf bifurcation leading to periodic oscillatory behavior occurs as the steepness of the APD response to the ion concentrations increases. The negative feedback loop between APD and Na^{+} concentration is required for the Hopf bifurcation. When the feedback between APD and Ca^{2+} concentration is negative, period-doubling bifurcations leading to high periodicity and chaos occurs. In this case, Na^{+} accumulation plays little role in the dynamics. Finally, we carry out simulations of the detailed action potential model under two diseased conditions, which exhibit steep APD responses to ion concentrations. Under both conditions, Hopf bifurcations leading to slow oscillations or period-doubling bifurcations leading to high periodicity and chaotic APD dynamics occur, depending on the strength of the ion pump-Na^{+}-Ca^{2+} exchanger. Using functions reconstructed from the simulation data, the IM model accurately captures the bifurcations and dynamics under the two diseased conditions. In conclusion, besides using computer simulations of a detailed high-dimensional action-potential model to investigate the effects of slow ion accumulation and short-term memory on bifurcations and genesis of complex APD dynamics in cardiac myocytes under diseased conditions, this study also provides a low-dimensional mathematical tool, i.e., the IM model, to allow stability analyses for uncovering the underlying mechanisms.

摘要

细胞内离子,包括钠(Na^{+})、钙(Ca^{2+})和钾(K^{+})等,在心脏状态改变后,如心率改变,会缓慢积累。本研究的目的是了解缓慢离子积累在心脏记忆的发生和导致致命性心律失常的复杂动作电位持续时间(APD)动力学中的作用。我们对心室肌细胞在正常和患病条件下的详细动作电位模型进行数值模拟,这些模型表现出记忆效应和复杂的 APD 动力学。我们开发了一个低维迭代映射(IM)模型来描述 Na^{+}、Ca^{2+}和 APD 的动力学,并利用它揭示潜在的动力学机制。IM 模型的开发是基于正常情况下的模拟结果。然后,我们使用 IM 模型进行线性稳定性分析和计算机模拟,以研究依赖于 APD 与细胞内 Ca^{2+}和 Na^{+}浓度之间的反馈环以及 APD 对离子浓度的响应陡峭度的分岔和复杂的 APD 动力学。当 APD 与 Ca^{2+}浓度之间的反馈为正,随着离子浓度对 APD 响应的陡峭度增加,会发生导致周期性振荡行为的 Hopf 分岔。APD 与 Na^{+}浓度之间的负反馈环是 Hopf 分岔所必需的。当 APD 与 Ca^{2+}浓度之间的反馈为负时,会发生导致高周期性和混沌的倍周期分岔。在这种情况下,Na^{+}积累对动力学的影响很小。最后,我们对表现出对离子浓度具有陡峭 APD 响应的两种病变条件下的详细动作电位模型进行模拟。在两种情况下,都会发生导致缓慢振荡的 Hopf 分岔或导致高周期性和混沌 APD 动力学的倍周期分岔,这取决于离子泵-Na^{+}-Ca^{2+}交换器的强度。使用从模拟数据中重建的函数,IM 模型准确地捕捉到了两种病变条件下的分岔和动力学。总之,除了使用详细的高维动作电位模型的计算机模拟来研究缓慢离子积累和短期记忆对心脏肌细胞在病变条件下的复杂 APD 动力学分岔和发生的影响外,本研究还提供了一个低维数学工具,即 IM 模型,允许进行稳定性分析以揭示潜在机制。

相似文献

1
Intracellular ion accumulation in the genesis of complex action potential dynamics under cardiac diseases.
Phys Rev E. 2024 Feb;109(2-1):024410. doi: 10.1103/PhysRevE.109.024410.
2
Bifurcations Caused by Feedback between Voltage and Intracellular Ion Concentrations in Ventricular Myocytes.
Phys Rev Lett. 2019 Nov 22;123(21):218101. doi: 10.1103/PhysRevLett.123.218101.
3
Memory-induced nonlinear dynamics of excitation in cardiac diseases.
Phys Rev E. 2018 Apr;97(4-1):042414. doi: 10.1103/PhysRevE.97.042414.
4
Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jan;75(1 Pt 1):011927. doi: 10.1103/PhysRevE.75.011927. Epub 2007 Jan 30.
5
Dynamical mechanisms of phase-2 early afterdepolarizations in human ventricular myocytes: insights from bifurcation analyses of two mathematical models.
Am J Physiol Heart Circ Physiol. 2017 Jan 1;312(1):H106-H127. doi: 10.1152/ajpheart.00115.2016. Epub 2016 Nov 11.
6
Nonlinear dynamics of two-dimensional cardiac action potential duration mapping model with memory.
J Math Biol. 2019 Apr;78(5):1529-1552. doi: 10.1007/s00285-018-1318-7. Epub 2019 Jan 1.
7
Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium.
Am J Physiol Heart Circ Physiol. 2009 Apr;296(4):H1017-26. doi: 10.1152/ajpheart.01216.2008. Epub 2009 Jan 23.
8
Simulation and mechanistic investigation of the arrhythmogenic role of the late sodium current in human heart failure.
PLoS One. 2012;7(3):e32659. doi: 10.1371/journal.pone.0032659. Epub 2012 Mar 12.
9
ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.
J Cardiovasc Electrophysiol. 2006 May;17 Suppl 1:S86-S95. doi: 10.1111/j.1540-8167.2006.00389.x.
10
Control of voltage-driven instabilities in cardiac myocytes with memory.
Chaos. 2018 Nov;28(11):113122. doi: 10.1063/1.5040854.

本文引用的文献

1
Cardiac Alternans: From Bedside to Bench and Back.
Circ Res. 2023 Jan 6;132(1):127-149. doi: 10.1161/CIRCRESAHA.122.321668. Epub 2023 Jan 5.
3
Synchronization of spatially discordant voltage and calcium alternans in cardiac tissue.
Phys Rev E. 2022 Aug;106(2-1):024406. doi: 10.1103/PhysRevE.106.024406.
4
R-on-T and the initiation of reentry revisited: Integrating old and new concepts.
Heart Rhythm. 2022 Aug;19(8):1369-1383. doi: 10.1016/j.hrthm.2022.03.1224. Epub 2022 Mar 30.
5
Why Is Only Type 1 Electrocardiogram Diagnostic of Brugada Syndrome? Mechanistic Insights From Computer Modeling.
Circ Arrhythm Electrophysiol. 2022 Jan;15(1):e010365. doi: 10.1161/CIRCEP.121.010365. Epub 2021 Dec 29.
6
Life and death saddles in the heart.
Phys Rev E. 2021 Jun;103(6-1):062406. doi: 10.1103/PhysRevE.103.062406.
7
The transient outward potassium current plays a key role in spiral wave breakup in ventricular tissue.
Am J Physiol Heart Circ Physiol. 2021 Feb 1;320(2):H826-H837. doi: 10.1152/ajpheart.00608.2020. Epub 2021 Jan 1.
8
Mechanisms of Premature Ventricular Complexes Caused by QT Prolongation.
Biophys J. 2021 Jan 19;120(2):352-369. doi: 10.1016/j.bpj.2020.12.001. Epub 2020 Dec 15.
9
Delayed global feedback in the genesis and stability of spatiotemporal excitation patterns in paced biological excitable media.
PLoS Comput Biol. 2020 Oct 5;16(10):e1007931. doi: 10.1371/journal.pcbi.1007931. eCollection 2020 Oct.
10
Bifurcations Caused by Feedback between Voltage and Intracellular Ion Concentrations in Ventricular Myocytes.
Phys Rev Lett. 2019 Nov 22;123(21):218101. doi: 10.1103/PhysRevLett.123.218101.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验