Suppr超能文献

致心律失常性早后除极在心肌细胞中产生的动力学机制:来自计算机电生理模型的见解。

Dynamical mechanism for generation of arrhythmogenic early afterdepolarizations in cardiac myocytes: Insights from in silico electrophysiological models.

机构信息

Department of Applied Mathematics and IUMA, Computational Dynamics group, University of Zaragoza, E-50009 Zaragoza, Spain.

I3A, University of Zaragoza, IIS Aragón and CIBER-BBN, E-50018 Zaragoza, Spain.

出版信息

Phys Rev E. 2022 Aug;106(2-1):024402. doi: 10.1103/PhysRevE.106.024402.

Abstract

We analyze the dynamical mechanisms underlying the formation of arrhythmogenic early afterdepolarizations (EADs) in two mathematical models of cardiac cellular electrophysiology: the Sato et al. biophysically detailed model of a rabbit ventricular myocyte of dimension 27 and a reduced version of the Luo-Rudy mammalian myocyte model of dimension 3. Based on a comparison of the two models, with detailed bifurcation analysis using spike-counting techniques and continuation methods in the simple model and numerical explorations in the complex model, we locate the point where the first EAD originates in an unstable branch of periodic orbits. These results serve as a basis to propose a conjectured scheme involving a hysteresis mechanism with the creation of alternans and EADs in the unstable branch. This theoretical scheme fits well with electrophysiological experimental data on EAD generation and hysteresis phenomena. Our findings open the door to the development of novel methods for pro-arrhythmia risk prediction related to EAD generation without actual induction of EADs.

摘要

我们分析了两个心脏细胞电生理数学模型中致心律失常性早期后除极(EAD)形成的动力学机制:Sato 等人的兔心室肌元 27 维详细生物物理模型和 Luo-Rudy 哺乳动物肌元 3 维简化模型。基于这两个模型的比较,使用尖峰计数技术和简单模型中的连续方法进行详细的分岔分析,以及在复杂模型中的数值探索,我们找到了第一个 EAD 在不稳定周期轨道分支中起源的点。这些结果为提出一个假说方案提供了基础,该方案涉及到一种滞后机制,其中在不稳定分支中产生交替和 EAD。这个理论方案与 EAD 产生和滞后现象的电生理实验数据非常吻合。我们的发现为开发与 EAD 产生相关的无实际 EAD 诱导的致心律失常风险预测的新方法开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验