Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany.
Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany.
Neuroimage. 2024 Apr 15;290:120563. doi: 10.1016/j.neuroimage.2024.120563. Epub 2024 Mar 16.
Individual differences in general cognitive ability (GCA) have a biological basis within the structure and function of the human brain. Network neuroscience investigations revealed neural correlates of GCA in structural as well as in functional brain networks. However, whether the relationship between structural and functional networks, the structural-functional brain network coupling (SC-FC coupling), is related to individual differences in GCA remains an open question. We used data from 1030 adults of the Human Connectome Project, derived structural connectivity from diffusion weighted imaging, functional connectivity from resting-state fMRI, and assessed GCA as a latent g-factor from 12 cognitive tasks. Two similarity measures and six communication measures were used to model possible functional interactions arising from structural brain networks. SC-FC coupling was estimated as the degree to which these measures align with the actual functional connectivity, providing insights into different neural communication strategies. At the whole-brain level, higher GCA was associated with higher SC-FC coupling, but only when considering path transitivity as neural communication strategy. Taking region-specific variations in the SC-FC coupling strategy into account and differentiating between positive and negative associations with GCA, allows for prediction of individual cognitive ability scores in a cross-validated prediction framework (correlation between predicted and observed scores: r = 0.25, p < .001). The same model also predicts GCA scores in a completely independent sample (N = 567, r = 0.19, p < .001). Our results propose structural-functional brain network coupling as a neurobiological correlate of GCA and suggest brain region-specific coupling strategies as neural basis of efficient information processing predictive of cognitive ability.
个体在一般认知能力(GCA)方面的差异在人类大脑的结构和功能中有其生物学基础。网络神经科学研究揭示了 GCA 在结构和功能大脑网络中的神经相关性。然而,结构和功能网络之间的关系,即结构-功能脑网络耦合(SC-FC 耦合),是否与 GCA 的个体差异有关,仍然是一个悬而未决的问题。我们使用了来自 1030 名人类连接组计划成年人的数据,从弥散加权成像中得出结构连接,从静息状态 fMRI 中得出功能连接,并从 12 项认知任务中评估了 GCA 作为潜在的 g 因素。我们使用了两种相似性度量和六种通信度量来模拟可能由结构大脑网络产生的功能相互作用。SC-FC 耦合被估计为这些度量与实际功能连接匹配的程度,从而深入了解不同的神经通信策略。在全脑水平上,较高的 GCA 与较高的 SC-FC 耦合相关,但仅当考虑路径传递性作为神经通信策略时才如此。考虑到 SC-FC 耦合策略的区域特异性变化,并区分与 GCA 的正相关和负相关,允许在交叉验证预测框架中预测个体认知能力分数(预测和观察分数之间的相关性:r = 0.25,p <.001)。同一模型还可以预测一个完全独立样本(N = 567,r = 0.19,p <.001)中的 GCA 分数。我们的结果提出了结构-功能脑网络耦合作为 GCA 的神经生物学相关性,并提出了大脑区域特定的耦合策略作为预测认知能力的有效信息处理的神经基础。