Suppr超能文献

动车组中的ENCEVIS算法及其性能影响因素:我们的经验。

The ENCEVIS algorithm in the EMU and the factors affecting its performance: Our experience.

作者信息

Tsereteli Aleksandre, Okujava Natela, Malashkhia Nikoloz, Liluashvili Konstantine, de Weerd Al

机构信息

Epilepsy and Sleep Centre, S. Khechinashvili University Hospital (SKUH), Georgia.

Department of Clinical Neurology, Tbilisi State Medical University (TSMU), Georgia.

出版信息

Epilepsy Behav Rep. 2024 Mar 5;26:100656. doi: 10.1016/j.ebr.2024.100656. eCollection 2024.

Abstract

The study's purpose was to assess the seizure detection performance of ENCEVIS 1.7, identify factors that may influence algorithm performance, and explore its potential for implementation and application in long-term video EEG monitoring units. The study included video-EEG recordings containing at least one epileptic seizure. Forty-three recordings, encompassing 112 seizures, were included in the analysis. True positive, false negative, and false positive seizure detections were defined. Factors that may influence algorithm performance were studied. ENCEVIS demonstrated an overall sensitivity of 71.2%, significantly higher (75.1%) in focal compared to generalized seizures (62%). Ictal patterns rhythmicity (rhythmic 59.4 %, arrhythmic 41.7 %), seizure duration (<10 sec 6.3 %, >60 sec. 63.9 % (p < 0.05)) and patient age (<18 years 39.5 %, >18 years 58.1 % (P < 0.05)) influenced ENCEVIS sensitivity. The coexistence of extracerebral signal changes did not influence sensitivity. ENCEVIS with 79.1% accuracy annotates at least one seizure in those recordings containing epileptic seizures. ENCEVIS seizure detection performance was reasonable for generalized/focal to bilateral tonic-clonic seizures and seizures with temporal lobe onset. Rhythmic ictal patterns, longer seizure duration, and adult age positively influenced algorithm performance. ENCEVIS can be a valuable tool for identifying recordings containing seizures and can potentially reduce the workload of neurophysiologists.

摘要

该研究的目的是评估ENCEVIS 1.7的癫痫发作检测性能,确定可能影响算法性能的因素,并探索其在长期视频脑电图监测单元中的实施和应用潜力。该研究纳入了包含至少一次癫痫发作的视频脑电图记录。分析中包括了43份记录,涵盖112次癫痫发作。定义了真阳性、假阴性和假阳性癫痫发作检测。研究了可能影响算法性能的因素。ENCEVIS的总体敏感性为71.2%,局灶性癫痫发作的敏感性(75.1%)显著高于全身性癫痫发作(62%)。发作期模式的节律性(节律性59.4%,无节律性41.7%)、癫痫发作持续时间(<10秒6.3%,>60秒63.9%(p<0.05))和患者年龄(<18岁39.5%,>18岁58.1%(P<0.05))影响ENCEVIS的敏感性。脑外信号变化的共存不影响敏感性。在那些包含癫痫发作的记录中,准确率为79.1%的ENCEVIS标注出至少一次癫痫发作。ENCEVIS对全身性/局灶性至双侧强直阵挛性癫痫发作以及颞叶起始的癫痫发作的检测性能是合理的。节律性发作期模式、较长的癫痫发作持续时间和成年年龄对算法性能有积极影响。ENCEVIS可以成为识别包含癫痫发作记录的有价值工具,并有可能减轻神经生理学家的工作量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/955d/10937301/22293120bccc/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验