Nazeen Sumaiya, Wang Xinyuan, Zielinski Dina, Lam Isabel, Hallacli Erinc, Xu Ping, Ethier Elizabeth, Strom Ronya, Zanella Camila A, Nithianandam Vanitha, Ritter Dylan, Henderson Alexander, Saurat Nathalie, Afroz Jalwa, Nutter-Upham Andrew, Benyamini Hadar, Copty Joseph, Ravishankar Shyamsundar, Morrow Autumn, Mitchel Jonathan, Neavin Drew, Gupta Renuka, Farbehi Nona, Grundman Jennifer, Myers Richard H, Scherzer Clemens R, Trojanowski John Q, Van Deerlin Vivianna M, Cooper Antony A, Lee Edward B, Erlich Yaniv, Lindquist Susan, Peng Jian, Geschwind Daniel H, Powell Joseph, Studer Lorenz, Feany Mel B, Sunyaev Shamil R, Khurana Vikram
Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
bioRxiv. 2024 Mar 7:2024.03.03.583145. doi: 10.1101/2024.03.03.583145.
Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aβ) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aβ modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes and , rare variants AD genes (, and ) and Aβ toxicity modifiers involved in RhoA/actin cytoskeleton regulation () were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of in both human cortical and dopaminergic neurons, and mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.
与同一蛋白质错误折叠相关的神经退行性疾病是否共享遗传风险驱动因素,或者神经退行性变中不同的蛋白质聚集病理在机制上是否相关,目前仍不确定。传统的基因分析在解决这些问题时能力不足。通过基于蛋白质聚集表型(而非临床诊断)仔细选择患者,我们可以提高统计能力,以检测一组可改变蛋白毒性的目标基因中的相关变异。酵母中α-突触核蛋白(ɑS)和β-淀粉样蛋白(Aβ)细胞毒性的遗传修饰因子分别在帕金森病(PD)和阿尔茨海默病(AD)的风险因素中富集。在此,连同已知的AD/PD风险基因,我们对α-突触核蛋白病(PD、路易体痴呆和多系统萎缩)患者的430个ɑS/Aβ修饰基因的外显子组进行了深度测序。除了已知的PD基因和,罕见变异的AD基因(、和)以及参与RhoA/肌动蛋白细胞骨架调节()的Aβ毒性修饰因子是突触核蛋白病的共同风险因素。肌动蛋白病理出现在诱导多能干细胞(iPSC)突触核蛋白病模型中,RhoA下调加剧了ɑS病理。即使在散发性PD中,这些基因的表达在中枢神经系统(CNS)的不同细胞类型中也发生了改变。全基因组CRISPR筛选揭示了在人类皮质和多巴胺能神经元中的必要性,并且突变携带者表现出弥漫性脑干和皮质突触核蛋白病,与AD病理无关。在PD全基因组关联研究(GWAS)中促成一个共同风险信号,并调节神经元中ɑS的表达。我们的结果确定了突触核蛋白病之间的趋同机制,其中一些与AD共享。