Shin Tay Won, Wang Hao, Zhang Chi, An Bobae, Lu Yangning, Zhang Elizabeth, Lu Xiaotang, Karagiannis Emmanouil D, Kang Jeong Seuk, Emenari Amauche, Symvoulidis Panagiotis, Asano Shoh, Lin Leanne, Costa Emma K, Marblestone Adam H, Kasthuri Narayanan, Tsai Li-Huei, Boyden Edward S
McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139.
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.
bioRxiv. 2024 Mar 8:2024.03.07.583776. doi: 10.1101/2024.03.07.583776.
Lipid membranes are key to the nanoscale compartmentalization of biological systems, but fluorescent visualization of them in intact tissues, with nanoscale precision, is challenging to do with high labeling density. Here, we report ultrastructural membrane expansion microscopy (umExM), which combines a novel membrane label and optimized expansion microscopy protocol, to support dense labeling of membranes in tissues for nanoscale visualization. We validated the high signal-to-background ratio, and uniformity and continuity, of umExM membrane labeling in brain slices, which supported the imaging of membranes and proteins at a resolution of ~60 nm on a confocal microscope. We demonstrated the utility of umExM for the segmentation and tracing of neuronal processes, such as axons, in mouse brain tissue. Combining umExM with optical fluctuation imaging, or iterating the expansion process, yielded ~35 nm resolution imaging, pointing towards the potential for electron microscopy resolution visualization of brain membranes on ordinary light microscopes.
脂质膜是生物系统纳米级区室化的关键,但要在完整组织中以纳米级精度对其进行荧光可视化,且实现高标记密度颇具挑战。在此,我们报告了超微结构膜膨胀显微镜技术(umExM),该技术结合了一种新型膜标记物和优化的膨胀显微镜方案,以支持对组织中的膜进行密集标记,从而实现纳米级可视化。我们验证了umExM膜标记在脑切片中的高信噪比、均匀性和连续性,这支持了在共聚焦显微镜上以约60纳米的分辨率对膜和蛋白质进行成像。我们展示了umExM在小鼠脑组织中对神经元突起(如轴突)进行分割和追踪的效用。将umExM与光学涨落成像相结合,或重复膨胀过程,可实现约35纳米分辨率的成像,这表明在普通光学显微镜上对脑膜进行电子显微镜分辨率可视化具有潜力。