Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Nat Biotechnol. 2023 Jun;41(6):858-869. doi: 10.1038/s41587-022-01546-1. Epub 2023 Jan 2.
Expansion microscopy enables nanoimaging with conventional microscopes by physically and isotropically magnifying preserved biological specimens embedded in a crosslinked water-swellable hydrogel. Current expansion microscopy protocols require prior treatment with reactive anchoring chemicals to link specific labels and biomolecule classes to the gel. We describe a strategy called Magnify, which uses a mechanically sturdy gel that retains nucleic acids, proteins and lipids without the need for a separate anchoring step. Magnify expands biological specimens up to 11 times and facilitates imaging of cells and tissues with effectively around 25-nm resolution using a diffraction-limited objective lens of about 280 nm on conventional optical microscopes or with around 15 nm effective resolution if combined with super-resolution optical fluctuation imaging. We demonstrate Magnify on a broad range of biological specimens, providing insight into nanoscopic subcellular structures, including synaptic proteins from mouse brain, podocyte foot processes in formalin-fixed paraffin-embedded human kidney and defects in cilia and basal bodies in drug-treated human lung organoids.
扩展显微镜通过物理方式将保存在交联水膨胀水凝胶中的生物标本进行各向同性放大,从而使传统显微镜能够进行纳米成像。目前的扩展显微镜方案需要使用反应性锚定化学物质预先处理,将特定的标签和生物分子类与凝胶连接起来。我们描述了一种称为 Magnify 的策略,它使用一种机械强度高的凝胶,在不需要单独的锚定步骤的情况下保留核酸、蛋白质和脂质。Magnify 将生物标本扩大到 11 倍,并使用传统光学显微镜上约 280nm 的衍射受限物镜以约 25nm 的有效分辨率进行细胞和组织成像,如果与超分辨率光学波动成像结合使用,则有效分辨率约为 15nm。我们在广泛的生物标本上展示了 Magnify,为纳米尺度的亚细胞结构提供了深入的了解,包括来自小鼠大脑的突触蛋白、福尔马林固定石蜡包埋人肾足细胞的足突以及药物处理的人肺类器官中的纤毛和基体缺陷。