Suppr超能文献

腺苷与皮质可塑性

Adenosine and Cortical Plasticity.

作者信息

Martínez-Gallego Irene, Rodríguez-Moreno Antonio

机构信息

Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.

出版信息

Neuroscientist. 2025 Feb;31(1):47-64. doi: 10.1177/10738584241236773. Epub 2024 Mar 18.

Abstract

Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named . During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.

摘要

脑可塑性是指神经系统响应经验而改变其结构和功能的能力。这些变化主要发生在突触连接部位,这种可塑性被称为[此处原文缺失该可塑性的具体命名]。在出生后的发育过程中,环境影响会引发突触可塑性的变化,这将对成年后脑回路的形成和完善及其功能发挥至关重要的作用。当前神经科学面临的最大挑战之一是试图解释在不同外部刺激后,突触连接如何变化以及皮质图谱如何形成和修改,以产生最适宜的适应性行为。腺苷正成为不同脑区这些可塑性变化中的关键因素。在此,我们综述了目前关于在出生后不同脑发育阶段负责突触可塑性诱导和持续时间的机制的知识,在这些阶段,可能由星形胶质细胞释放的腺苷直接参与长期突触可塑性的诱导以及不同皮质突触可塑性窗口持续时间的控制。此外,我们还评论了不同腺苷受体在脑部疾病中的作用以及通过腺苷受体发挥作用的潜在治疗效果。

相似文献

1
Adenosine and Cortical Plasticity.
Neuroscientist. 2025 Feb;31(1):47-64. doi: 10.1177/10738584241236773. Epub 2024 Mar 18.
2
Adenosine: setting the stage for plasticity.
Trends Neurosci. 2013 Apr;36(4):248-57. doi: 10.1016/j.tins.2012.12.003. Epub 2013 Jan 15.
3
Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation.
Brain Res. 2015 Sep 24;1621:102-13. doi: 10.1016/j.brainres.2014.11.008. Epub 2014 Nov 13.
5
Astrocytic purinergic signaling coordinates synaptic networks.
Science. 2005 Oct 7;310(5745):113-6. doi: 10.1126/science.1116916.
6
How does adenosine control neuronal dysfunction and neurodegeneration?
J Neurochem. 2016 Dec;139(6):1019-1055. doi: 10.1111/jnc.13724. Epub 2016 Aug 16.
7
Astrocyte Signaling Gates Long-Term Depression at Corticostriatal Synapses of the Direct Pathway.
J Neurosci. 2020 Jul 22;40(30):5757-5768. doi: 10.1523/JNEUROSCI.2369-19.2020. Epub 2020 Jun 15.
8
Histaminergic Control of Corticostriatal Synaptic Plasticity during Early Postnatal Development.
J Neurosci. 2020 Aug 19;40(34):6557-6571. doi: 10.1523/JNEUROSCI.0740-20.2020. Epub 2020 Jul 24.
9
Adenosine Receptor-Mediated Developmental Loss of Spike Timing-Dependent Depression in the Hippocampus.
Cereb Cortex. 2019 Jul 22;29(8):3266-3281. doi: 10.1093/cercor/bhy194.
10
Human brain plasticity: evidence from sensory deprivation and altered language experience.
Prog Brain Res. 2002;138:177-88. doi: 10.1016/S0079-6123(02)38078-6.

引用本文的文献

1
The role of astrocytes from synaptic to non-synaptic plasticity.
Front Cell Neurosci. 2024 Oct 18;18:1477985. doi: 10.3389/fncel.2024.1477985. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验