Suppr超能文献

用于高能锂电池的耐还原电解质设计

Reduction-Tolerance Electrolyte Design for High-Energy Lithium Batteries.

作者信息

Sun Chuangchao, Li Ruhong, Weng Suting, Zhu Chunnan, Chen Long, Jiang Sen, Li Long, Xiao Xuezhang, Liu Chengwu, Chen Lixin, Deng Tao, Wang Xuefeng, Fan Xiulin

机构信息

State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.

出版信息

Angew Chem Int Ed Engl. 2024 May 6;63(19):e202400761. doi: 10.1002/anie.202400761. Epub 2024 Apr 4.

Abstract

Lithium batteries employing Li or silicon (Si) anodes hold promise for the next-generation energy storage systems. However, their cycling behavior encounters rapid capacity degradation due to the vulnerability of solid electrolyte interphases (SEIs). Though anion-derived SEIs mitigate this degradation, the unavoidable reduction of solvents introduces heterogeneity to SEIs, leading to fractures during cycling. Here, we elucidate how the reductive stability of solvents, dominated by the electrophilicity (EPT) and coordination ability (CDA), delineates the SEI formed on Li or Si anodes. Solvents exhibiting lower EPT and CDA demonstrate enhanced tolerance to reduction, resulting in inorganic-rich SEIs with homogeneity. Guided by these criteria, we synthesized three promising solvents tailored for Li or Si anodes. The decomposition of these solvents is dictated by their EPTs under similar solvation structures, imparting distinct characteristics to SEIs and impacting battery performance. The optimized electrolyte, 1 M lithium bis(fluorosulfonyl)imide (LiFSI) in N-Pyrrolidine-trifluoromethanesulfonamide (TFSPY), achieves 600 cycles of Si anodes with a capacity retention of 81 % (1910 mAh g). In anode-free Cu||LiNiCoMnO (NCM523) pouch cells, this electrolyte sustains over 100 cycles with an 82 % capacity retention. These findings illustrate that reducing solvent decomposition benefits SEI formation, offering valuable insights for the designing electrolytes in high-energy lithium batteries.

摘要

采用锂或硅(Si)阳极的锂电池有望应用于下一代储能系统。然而,由于固体电解质界面(SEI)的脆弱性,它们的循环行为会遭遇快速的容量衰减。尽管阴离子衍生的SEI减轻了这种衰减,但溶剂不可避免的还原会给SEI带来异质性,导致循环过程中出现裂缝。在这里,我们阐明了由亲电性(EPT)和配位能力(CDA)主导的溶剂还原稳定性如何描绘在锂或硅阳极上形成的SEI。表现出较低EPT和CDA的溶剂对还原具有更高的耐受性,从而形成具有均匀性的富无机SEI。基于这些标准,我们合成了三种适用于锂或硅阳极的有前景的溶剂。在相似的溶剂化结构下,这些溶剂的分解取决于它们的EPT,赋予SEI不同的特性并影响电池性能。优化后的电解质,即1 M双(氟磺酰)亚胺锂(LiFSI)溶于N-吡咯烷-三氟甲磺酰胺(TFSPY)中,可实现硅阳极600次循环,容量保持率为81%(1910 mAh g)。在无阳极的铜||锂镍钴锰氧化物(NCM523)软包电池中,这种电解质可维持100多次循环,容量保持率为82%。这些发现表明,减少溶剂分解有利于SEI的形成,为高能锂电池电解质的设计提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验