Weeks Jason A, Burrow James N, Diao Jiefeng, Paul-Orecchio Austin G, Srinivasan Hrishikesh S, Vaidyula Rinish Reddy, Dolocan Andrei, Henkelman Graeme, Mullins C Buddie
Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA.
John J. McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712-1589, USA.
Adv Mater. 2024 Mar;36(9):e2305645. doi: 10.1002/adma.202305645. Epub 2023 Dec 14.
The discovery of liquid battery electrolytes that facilitate the formation of stable solid electrolyte interphases (SEIs) to mitigate dendrite formation is imperative to enable lithium anodes in next-generation energy-dense batteries. Compared to traditional electrolyte solvents, tetrahydrofuran (THF)-based electrolyte systems have demonstrated great success in enabling high-stability lithium anodes by encouraging the decomposition of anions (instead of organic solvent) and thus generating inorganic-rich SEIs. Herein, by employing a variety of different lithium salts (i.e., LiPF LiTFSI, LiFSI, and LiDFOB), it is demonstrated that electrolyte anions modulate the inorganic composition and resulting properties of the SEI. Through novel analytical time-of-flight secondary-ion mass spectrometry methods, such as hierarchical clustering of depth profiles and compositional analysis using integrated yields, the chemical composition and morphology of the SEIs generated from each electrolyte system are examined. Notably, the LiDFOB electrolyte provides an exceptionally stable system to enable lithium anodes, delivering >1500 cycles at a current density of 0.5 mAh g and a capacity of 0.5 mAh g in symmetrical cells. Furthermore, Li//LFP cells using this electrolyte demonstrate high-rate, reversible lithium storage, supplying 139 mAh g at C/2 (≈0.991 mAh cm , @ 0.61 mA cm ) with 87.5% capacity retention over 300 cycles (average Coulombic efficiency >99.86%).
发现能够促进稳定固体电解质界面(SEI)形成以减轻枝晶形成的液体电池电解质对于下一代高能量密度电池中锂负极的应用至关重要。与传统电解质溶剂相比,基于四氢呋喃(THF)的电解质体系通过促进阴离子(而非有机溶剂)分解从而生成富含无机成分的SEI,在实现高稳定性锂负极方面已取得巨大成功。在此,通过使用多种不同的锂盐(即LiPF、LiTFSI、LiFSI和LiDFOB),证明了电解质阴离子可调节SEI的无机组成及其性能。通过新颖的飞行时间二次离子质谱分析方法,如深度剖析的层次聚类和使用积分产率的成分分析,研究了每种电解质体系生成的SEI的化学成分和形态。值得注意的是,LiDFOB电解质提供了一个异常稳定的体系以实现锂负极,在对称电池中,在0.5 mAh g的电流密度和0.5 mAh g的容量下可循环超过1500次。此外,使用这种电解质的Li//LFP电池展现出高倍率、可逆的锂存储性能,在C/2(≈0.991 mAh cm ,@ 0.61 mA cm )下提供139 mAh g的容量,在300次循环中容量保持率为87.5%(平均库仑效率>99.86%)。