Park Kyung Chan, Crump Nicholas T, Louwman Niamh, Krywawych Steve, Cheong Yuen Jian, Vendrell Iolanda, Gill Eleanor K, Gunadasa-Rohling Mala, Ford Kerrie L, Hauton David, Fournier Marjorie, Pires Elisabete, Watson Lydia, Roseman Gerald, Holder James, Koschinski Andreas, Carnicer Ricardo, Curtis M Kate, Zaccolo Manuela, Hulikova Alzbeta, Fischer Roman, Kramer Holger B, McCullagh James S O, Trefely Sophie, Milne Thomas A, Swietach Pawel
Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.
MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
Nat Cardiovasc Res. 2023 Dec;2(12):1221-1245. doi: 10.1038/s44161-023-00365-0. Epub 2023 Nov 23.
Propiogenic substrates and gut bacteria produce propionate, a post-translational protein modifier. In this study, we used a mouse model of propionic acidaemia (PA) to study how disturbances to propionate metabolism result in histone modifications and changes to gene expression that affect cardiac function. Plasma propionate surrogates were raised in PA mice, but female hearts manifested more profound changes in acyl-CoAs, histone propionylation and acetylation, and transcription. These resulted in moderate diastolic dysfunction with raised diastolic Ca, expanded end-systolic ventricular volume and reduced stroke volume. Propionate was traced to histone H3 propionylation and caused increased acetylation genome-wide, including at promoters of and , genes related to contractile dysfunction through downscaled cGMP signaling. The less severe phenotype in male hearts correlated with β-alanine buildup. Raising β-alanine in cultured myocytes treated with propionate reduced propionyl-CoA levels, indicating a mechanistic relationship. Thus, we linked perturbed propionate metabolism to epigenetic changes that impact cardiac function.
生丙酸底物和肠道细菌产生丙酸,一种翻译后蛋白质修饰物。在本研究中,我们使用丙酸血症(PA)小鼠模型来研究丙酸代谢紊乱如何导致组蛋白修饰和基因表达变化,进而影响心脏功能。PA小鼠的血浆丙酸替代物升高,但雌性心脏在酰基辅酶A、组蛋白丙酰化和乙酰化以及转录方面表现出更深刻的变化。这些变化导致中度舒张功能障碍,舒张期钙离子升高,收缩末期心室容积扩大,每搏输出量减少。丙酸可追溯到组蛋白H3丙酰化,并导致全基因组乙酰化增加,包括通过下调cGMP信号与收缩功能障碍相关的 和 基因的启动子区域。雄性心脏中较轻的表型与β-丙氨酸积累有关。在丙酸处理的培养心肌细胞中提高β-丙氨酸水平可降低丙酰辅酶A水平,表明存在一种机制关系。因此,我们将丙酸代谢紊乱与影响心脏功能的表观遗传变化联系起来。