Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria; Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
Mol Metab. 2024 Dec;90:102032. doi: 10.1016/j.molmet.2024.102032. Epub 2024 Sep 19.
Histone acetylation is an important epigenetic modification that regulates various biological processes and cell homeostasis. Acetyl-CoA, a hub molecule of metabolism, is the substrate for histone acetylation, thus linking metabolism with epigenetic regulation. However, still relatively little is known about the dynamics of histone acetylation and its dependence on metabolic processes, due to the lack of integrated methods that can capture site-specific histone acetylation and deacetylation reactions together with the dynamics of acetyl-CoA synthesis.
In this study, we present a novel proteo-metabo-flux approach that combines mass spectrometry-based metabolic flux analysis of acetyl-CoA and histone acetylation with computational modelling. We developed a mathematical model to describe metabolic label incorporation into acetyl-CoA and histone acetylation based on experimentally measured relative abundances.
We demonstrate that our approach is able to determine acetyl-CoA synthesis dynamics and site-specific histone acetylation and deacetylation reaction rate constants, and that consideration of the metabolically labelled acetyl-CoA fraction is essential for accurate determination of histone acetylation dynamics. Furthermore, we show that without correction, changes in metabolic fluxes would be misinterpreted as changes in histone acetylation dynamics, whereas our proteo-metabo-flux approach allows to distinguish between the two processes.
Our proteo-metabo-flux approach expands the repertoire of metabolic flux analysis and cross-omics and represents a valuable approach to study the regulatory interplay between metabolism and epigenetic regulation by histone acetylation.
组蛋白乙酰化是一种重要的表观遗传修饰,调节着各种生物过程和细胞内稳态。乙酰辅酶 A(Acetyl-CoA)作为代谢的中心分子,是组蛋白乙酰化的底物,从而将代谢与表观遗传调控联系起来。然而,由于缺乏能够同时捕捉组蛋白乙酰化和去乙酰化反应以及乙酰辅酶 A 合成动力学的综合方法,因此人们对组蛋白乙酰化的动态及其对代谢过程的依赖性仍然知之甚少。
在本研究中,我们提出了一种新的蛋白代谢通量方法,该方法将基于质谱的乙酰辅酶 A 和组蛋白乙酰化的代谢通量分析与计算建模相结合。我们开发了一种数学模型,根据实验测量的相对丰度,描述了代谢标记物掺入乙酰辅酶 A 和组蛋白乙酰化的过程。
我们证明了我们的方法能够确定乙酰辅酶 A 合成动力学以及组蛋白乙酰化和去乙酰化反应的速率常数,并且考虑到代谢标记的乙酰辅酶 A 部分对于准确确定组蛋白乙酰化动力学是必不可少的。此外,我们还表明,如果不进行校正,代谢通量的变化将被错误地解释为组蛋白乙酰化动力学的变化,而我们的蛋白代谢通量方法则可以区分这两个过程。
我们的蛋白代谢通量方法扩展了代谢通量分析和组学交叉的方法,是研究代谢与组蛋白乙酰化介导的表观遗传调控之间调控相互作用的一种有价值的方法。