Suppr超能文献

机械通气危重症成人氧目标的个体化治疗效果。

Individualized Treatment Effects of Oxygen Targets in Mechanically Ventilated Critically Ill Adults.

机构信息

Division of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois.

Division of Pulmonary and Critical Care, Department of Medicine, University of Wisconsin-Madison, Madison.

出版信息

JAMA. 2024 Apr 9;331(14):1195-1204. doi: 10.1001/jama.2024.2933.

Abstract

IMPORTANCE

Among critically ill adults, randomized trials have not found oxygenation targets to affect outcomes overall. Whether the effects of oxygenation targets differ based on an individual's characteristics is unknown.

OBJECTIVE

To determine whether an individual's characteristics modify the effect of lower vs higher peripheral oxygenation-saturation (Spo2) targets on mortality.

DESIGN, SETTING, AND PARTICIPANTS: A machine learning model to predict the effect of treatment with a lower vs higher Spo2 target on mortality for individual patients was derived in the Pragmatic Investigation of Optimal Oxygen Targets (PILOT) trial and externally validated in the Intensive Care Unit Randomized Trial Comparing Two Approaches to Oxygen Therapy (ICU-ROX) trial. Critically ill adults received invasive mechanical ventilation in an intensive care unit (ICU) in the United States between July 2018 and August 2021 for PILOT (n = 1682) and in 21 ICUs in Australia and New Zealand between September 2015 and May 2018 for ICU-ROX (n = 965).

EXPOSURES

Randomization to a lower vs higher Spo2 target group.

MAIN OUTCOME AND MEASURE

28-Day mortality.

RESULTS

In the ICU-ROX validation cohort, the predicted effect of treatment with a lower vs higher Spo2 target for individual patients ranged from a 27.2% absolute reduction to a 34.4% absolute increase in 28-day mortality. For example, patients predicted to benefit from a lower Spo2 target had a higher prevalence of acute brain injury, whereas patients predicted to benefit from a higher Spo2 target had a higher prevalence of sepsis and abnormally elevated vital signs. Patients predicted to benefit from a lower Spo2 target experienced lower mortality when randomized to the lower Spo2 group, whereas patients predicted to benefit from a higher Spo2 target experienced lower mortality when randomized to the higher Spo2 group (likelihood ratio test for effect modification P = .02). The use of a Spo2 target predicted to be best for each patient, instead of the randomized Spo2 target, would have reduced the absolute overall mortality by 6.4% (95% CI, 1.9%-10.9%).

CONCLUSION AND RELEVANCE

Oxygenation targets that are individualized using machine learning analyses of randomized trials may reduce mortality for critically ill adults. A prospective trial evaluating the use of individualized oxygenation targets is needed.

摘要

重要提示

在危重症成人中,随机试验并未发现氧合目标会整体影响结局。氧合目标的效果是否因个体特征而异尚不清楚。

目的

确定个体特征是否会改变较低与较高外周血氧饱和度(Spo2)目标对死亡率的影响。

设计、设置和参与者:从 Pragmatic Investigation of Optimal Oxygen Targets(PILOT)试验中提取了一种机器学习模型,用于预测对于个体患者,采用较低与较高 Spo2 目标治疗对死亡率的影响,并在 Intensive Care Unit Randomized Trial Comparing Two Approaches to Oxygen Therapy(ICU-ROX)试验中进行了外部验证。在美国的重症监护病房(ICU)中,患有严重疾病的成年人接受了有创机械通气,纳入时间为 2018 年 7 月至 2021 年 8 月(PILOT 试验,n=1682)和 2015 年 9 月至 2018 年 5 月(ICU-ROX 试验,n=965)期间澳大利亚和新西兰的 21 个 ICU 中。

暴露

随机分为较低 Spo2 目标组与较高 Spo2 目标组。

主要结局和测量指标

28 天死亡率。

结果

在 ICU-ROX 验证队列中,对于个体患者,采用较低 Spo2 目标治疗的预测效果范围为 28 天死亡率绝对降低 27.2%至绝对增加 34.4%。例如,预计从较低 Spo2 目标中获益的患者有更高的急性脑损伤患病率,而预计从较高 Spo2 目标中获益的患者有更高的脓毒症患病率和异常升高的生命体征。预计从较低 Spo2 目标中获益的患者被随机分配到较低 Spo2 组时死亡率较低,而预计从较高 Spo2 目标中获益的患者被随机分配到较高 Spo2 组时死亡率较低(用于检验效应修饰的似然比检验,P=0.02)。使用机器学习分析随机试验得出的预测对每个患者最有利的 Spo2 目标,而不是随机 Spo2 目标,可能会降低 6.4%(95%CI,1.9%-10.9%)的绝对总体死亡率。

结论和相关性

使用随机试验的机器学习分析个体化氧合目标可能会降低危重症成年人的死亡率。需要开展一项前瞻性试验来评估个体化氧合目标的使用。

相似文献

引用本文的文献

6
Advances in Machine Learning for Mechanically Ventilated Patients.机械通气患者的机器学习进展
Int J Gen Med. 2025 Jun 21;18:3301-3311. doi: 10.2147/IJGM.S515170. eCollection 2025.
10
Acute respiratory distress syndrome: Rethinking and research priorities.急性呼吸窘迫综合征:反思与研究重点
Chin Med J (Engl). 2025 Jul 5;138(13):1516-1518. doi: 10.1097/CM9.0000000000003643. Epub 2025 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验