Medvedko Serhii, Wagner J Philipp
Institut für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
Department of Organic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Peremohy Ave. 37, 03056, Kyiv, Ukraine.
Chemistry. 2024 May 23;30(29):e202400026. doi: 10.1002/chem.202400026. Epub 2024 May 2.
While π-bonds typically undergo cycloaddition with ozone, resulting in the release of much-noticed carbonyl O-oxide Criegee intermediates, lone-pairs of electrons tend to selectively accept a single oxygen atom from O, producing singlet dioxygen. We questioned whether the introduction of potent electron-donating groups, akin to N-heterocyclic olefins, could influence the reactivity of double bonds - shifting from cycloaddition to oxygen atom transfer or generating lesser-known, yet stabilized, donor-substituted Criegee intermediates. Consequently, we conducted a comparative computational study using density functional theory on a series of model olefins with increasing polarity due to (asymmetric) π-donor substitution. Reaction path computations indicate that highly polarized double bonds, instead of forming primary ozonides in their reaction with O, exhibit a preference for accepting a single oxygen atom, resulting in a zwitterionic species formally identified as a carbene-carbonyl adduct. This previously unexplored reactivity potentially introduces aldehyde umpolung chemistry (Breslow intermediate) through olefin ozonolysis. Considering solvent effects implicitly reveals that increased solvent polarity further directs the trajectories toward a single oxygen atom transfer reactivity by stabilizing the zwitterionic character of the transition state. The competing modes of chemical reactivity can be explained by a bifurcation of the reaction valley in the post-transition state region.
虽然π键通常会与臭氧发生环加成反应,生成备受关注的羰基氧氧化物克里格中间体,但孤对电子倾向于选择性地从臭氧中接受单个氧原子,生成单线态氧。我们质疑,引入类似于N-杂环烯烃的强供电子基团,是否会影响双键的反应性——从环加成转变为氧原子转移,或者生成鲜为人知但更稳定的供体取代克里格中间体。因此,我们使用密度泛函理论对一系列因(不对称)π供体取代而极性增加的模型烯烃进行了比较计算研究。反应路径计算表明,高度极化的双键在与臭氧反应时,不是形成初级臭氧化物,而是倾向于接受单个氧原子,生成一种两性离子物种,正式确定为卡宾-羰基加合物。这种以前未被探索的反应性可能通过烯烃臭氧化引入醛的极性反转化学(布雷斯洛中间体)。隐含地考虑溶剂效应表明,增加溶剂极性会通过稳定过渡态的两性离子特性,进一步引导反应轨迹趋向于单个氧原子转移反应性。化学反应的竞争模式可以通过过渡态后区域反应谷的分叉来解释。