Rezayati Sobhan, Morsali Ali
Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran 14117-13116, Islamic Republic of Iran.
Inorg Chem. 2024 Apr 1;63(13):6051-6066. doi: 10.1021/acs.inorgchem.4c00376. Epub 2024 Mar 19.
In this study, a chiral [Cu(l-proline)] complex-modified FeO@SiO@UiO-66-NH(Zr) metal-organic framework [FeO@SiO@UiO-66-NH-Cu(l-proline)] via multifunctionalization strategies was designed and synthesized. One simple approach to chiralize an achiral MOF-structure that cannot be directly chiralized using a chiral secondary agent like 4-hydroxy-l-proline. Therefore, this chiral catalyst was synthesized with a simple and multistep method. Accordingly, FeO@SiO@UiO-66-NH has been synthesized via FeO modification with tetraethyl orthosilicate and subsequently with ZrCl and 2-aminoterephthalic acid. The presence of the silica layer helps to stabilize the FeO core, while the bonding between Zr and the -OH groups in the silica layer promotes the development of Zr-MOFs on the FeO surface, and then the surfaces of the synthesized magnetic MOFs composite are functionalized with 1,2-dichloroethane and Cu(II) complex with 4-hydroxy-l-proline, [Cu(l-proline)] to afford the magnetically chiral nanocatalyst. Multiple techniques were employed to characterize this magnetically chiral nanocatalyst such as Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), powder X-ray diffraction (PXRD), circular dichroism (CD), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), and Brunauer-Emmett-Teller (BET) analyses. Moreover, a magnetically chiral nanocatalyst shows the asymmetric CO fixation reaction under solvent-free conditions at 80 °C and in ethanol under reflux conditions with up to 99 and 98% , respectively. Furthermore, the reaction mechanism was illustrated concerning the total energy of the reactant, intermediates and product, and the structural parameters were analyzed.
在本研究中,通过多功能化策略设计并合成了一种手性[Cu(l-脯氨酸)]配合物修饰的FeO@SiO@UiO-66-NH(Zr)金属有机框架[FeO@SiO@UiO-66-NH-Cu(l-脯氨酸)]。有一种简单的方法可以使不能使用手性二级试剂(如4-羟基-l-脯氨酸)直接手性化的非手性MOF结构手性化。因此,这种手性催化剂是通过一种简单的多步方法合成的。相应地,FeO@SiO@UiO-66-NH是通过用原硅酸四乙酯对FeO进行改性,随后用ZrCl和2-氨基对苯二甲酸合成的。二氧化硅层的存在有助于稳定FeO核,而Zr与二氧化硅层中-OH基团之间的键合促进了FeO表面Zr-MOFs的生长,然后用1,2-二氯乙烷和与4-羟基-l-脯氨酸的Cu(II)配合物[Cu(l-脯氨酸)]对合成的磁性MOF复合材料表面进行功能化,得到磁性手性纳米催化剂。采用了多种技术对这种磁性手性纳米催化剂进行表征,如傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、能量色散X射线光谱(EDX)、粉末X射线衍射(PXRD)、圆二色性(CD)、电感耦合等离子体(ICP)、热重分析(TGA)、振动样品磁强计(VSM)和布鲁诺尔-埃米特-泰勒(BET)分析。此外,一种磁性手性纳米催化剂在80℃无溶剂条件下以及在乙醇回流条件下分别显示出高达99%和98%的不对称CO固定反应。此外,还针对反应物、中间体和产物的总能量说明了反应机理,并分析了结构参数。