Duverger Eric, Riedel Damien
Institut FEMTO-ST, Univ. Franche-Comté, CNRS, F-25030 Besançon, France.
Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91405 Orsay, France.
ACS Nano. 2024 Apr 2;18(13):9656-9669. doi: 10.1021/acsnano.4c01008. Epub 2024 Mar 19.
Integrating nanoscale optoelectronic functions is vital for applications such as optical emitters, detectors, and quantum information. Lanthanide atoms show great potential in this endeavor due to their intrinsic transitions. Here, we investigate Er adatoms on Si(100)-2×1 at 9 K using a scanning tunneling microscope (STM) coupled to a tunable laser. Er adatoms display two main adsorption configurations that are optically excited between 800 and 1200 nm while the STM reads the resulting photocurrents. Our spectroscopic method reveals that various photocurrent signals stem from the bare silicon surface or Er adatoms. Additional photocurrent peaks appear as the signature of the Er adatom relaxation, triggering efficient dissociation of nearby trapped excitons. Calculations using density functional theory with spin-orbit coupling correction highlight the origin of the observed photocurrent peaks as specific 4f→4f or 4f→5d transitions. This spectroscopic technique can facilitate optoelectronic analysis of atomic and molecular assemblies by offering insight into their intrinsic quantum properties.
整合纳米级光电功能对于诸如光发射器、探测器和量子信息等应用至关重要。镧系原子由于其固有的跃迁在这一领域展现出巨大潜力。在此,我们借助结合了可调谐激光器的扫描隧道显微镜(STM)在9 K温度下研究了Si(100)-2×1表面上的铒吸附原子。铒吸附原子呈现出两种主要的吸附构型,在800至1200纳米之间受到光激发,同时STM读取产生的光电流。我们的光谱方法揭示,各种光电流信号源于裸露的硅表面或铒吸附原子。额外的光电流峰作为铒吸附原子弛豫的特征出现,引发附近捕获激子的有效解离。使用带有自旋轨道耦合校正的密度泛函理论进行的计算突出了所观察到的光电流峰的起源是特定的4f→4f或4f→5d跃迁。这种光谱技术通过深入了解原子和分子组装体的固有量子特性,有助于对其进行光电分析。