Ma Hui, Kinzer-Ursem Tamara L, Linnes Jacqueline C
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Anal Chem. 2024 Apr 2;96(13):5265-5273. doi: 10.1021/acs.analchem.3c05982. Epub 2024 Mar 19.
Two-phase porous media flow is important in many applications from drug delivery to groundwater diffusion and oil recovery and is of particular interest to biomedical diagnostic test developers using cellulose and nitrocellulose membranes with limited fluid sample volumes. This work presents a new two-phase porous media flow model based on the incompressible Navier-Stokes equation. The model aims to address the limitations of existing methods by incorporating a partial saturation distribution in porous media to account for limited fluid volumes. The basic parameters of the model are the pore size distribution and the contact angle. To validate the model, we solved five analytical solutions and compared them to corresponding experimental data. The experimentally measured penetration length data agreed with the model predictions, demonstrating model accuracy. Our findings suggest that this new two-phase porous media flow model can provide a valuable tool for researchers developing fluidic assays in paper and other porous media.
两相多孔介质流动在从药物输送到地下水扩散及石油开采等众多应用中都很重要,对于使用纤维素和硝化纤维素膜且流体样本量有限的生物医学诊断测试开发者来说尤其如此。这项工作提出了一种基于不可压缩纳维-斯托克斯方程的新型两相多孔介质流动模型。该模型旨在通过纳入多孔介质中的部分饱和度分布来解决现有方法的局限性,以考虑有限的流体体积。模型的基本参数是孔径分布和接触角。为了验证该模型,我们求解了五个解析解并将它们与相应的实验数据进行比较。实验测量的渗透长度数据与模型预测结果相符,证明了模型的准确性。我们的研究结果表明,这种新型两相多孔介质流动模型可为在纸张和其他多孔介质中开发流体分析方法的研究人员提供有价值的工具。