Suppr超能文献

基于纸张的可穿戴设备中利用毛细蒸发传输进行长期液体处理的原理

Principles of long-term fluids handling in paper-based wearables with capillary-evaporative transport.

作者信息

Shay Timothy, Saha Tamoghna, Dickey Michael D, Velev Orlin D

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA.

出版信息

Biomicrofluidics. 2020 Jun 9;14(3):034112. doi: 10.1063/5.0010417. eCollection 2020 May.

Abstract

We construct and investigate paper-based microfluidic devices, which model long-term fluid harvesting, transport, sensing, and analysis in new wearables for sweat analysis. Such devices can continuously wick fluid mimicking sweat and dispose of it on evaporation pads. We characterize and analyze how the action of capillarity and evaporation can cooperatively be used to transport and process sweat mimics containing dissolved salts and model analytes. The results point out that non-invasive osmotic extraction combined with paper microfluidics and evaporative disposal can enable sweat collection and monitoring for durations longer than 10 days. We model the fluid flow in the new capillary-evaporative devices and identify the parameters enabling their long-term operation. We show that the transport rates are sufficiently large to handle natural sweat rates, while we envision that such handling can be interfaced with osmotic harvesting of sweat, a concept that we demonstrated recently. Finally, we illustrate that the salt film deposited at the evaporation pad would eventually lead to cessation of the process but at the same time will preserve a record of analytes that may be used for long-term biomarker monitoring in sweat. These principles can be implemented in future platforms for wearable skin-interfacing assays or electronic biomarker monitors.

摘要

我们构建并研究了基于纸张的微流控设备,该设备模拟了用于汗液分析的新型可穿戴设备中的长期液体收集、传输、传感和分析过程。此类设备能够持续吸收类似汗液的液体,并将其排放到蒸发垫上。我们对毛细作用和蒸发作用如何协同用于传输和处理含有溶解盐及模拟分析物的汗液模拟物进行了表征和分析。结果表明,非侵入性渗透萃取与纸质微流控技术及蒸发处理相结合,能够实现长达10天以上的汗液收集和监测。我们对新型毛细管蒸发设备中的流体流动进行了建模,并确定了使其能够长期运行的参数。我们表明,传输速率足够大,足以处理自然汗液分泌速率,同时我们设想这种处理方式可以与汗液的渗透收集相结合,这是我们最近证明的一个概念。最后,我们说明沉积在蒸发垫上的盐膜最终会导致该过程停止,但同时会保留分析物记录,可用于汗液中生物标志物的长期监测。这些原理可应用于未来用于可穿戴皮肤接口检测或电子生物标志物监测的平台。

相似文献

1
Principles of long-term fluids handling in paper-based wearables with capillary-evaporative transport.
Biomicrofluidics. 2020 Jun 9;14(3):034112. doi: 10.1063/5.0010417. eCollection 2020 May.
2
Wearable Osmotic-Capillary Patch for Prolonged Sweat Harvesting and Sensing.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):8071-8081. doi: 10.1021/acsami.0c22730. Epub 2021 Feb 15.
3
Harvesting and manipulating sweat and interstitial fluid in microfluidic devices.
Lab Chip. 2024 Feb 27;24(5):1244-1265. doi: 10.1039/d3lc00874f.
4
Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms.
Acc Chem Res. 2019 Feb 19;52(2):297-306. doi: 10.1021/acs.accounts.8b00555. Epub 2019 Jan 28.
5
Osmotically Enabled Wearable Patch for Sweat Harvesting and Lactate Quantification.
Micromachines (Basel). 2021 Dec 4;12(12):1513. doi: 10.3390/mi12121513.
6
A Wearable Patch for Prolonged Sweat Lactate Harvesting and Sensing.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:6863-6866. doi: 10.1109/EMBC46164.2021.9630881.
7
Wireless Wearable Electrochemical Sensing Platform with Zero-Power Osmotic Sweat Extraction for Continuous Lactate Monitoring.
ACS Sens. 2022 Jul 22;7(7):2037-2048. doi: 10.1021/acssensors.2c00830. Epub 2022 Jul 12.
8
Skin-interfaced microfluidic devices with one-opening chambers and hydrophobic valves for sweat collection and analysis.
Lab Chip. 2020 Aug 7;20(15):2635-2645. doi: 10.1039/d0lc00400f. Epub 2020 Jun 18.
9
Wearable Biosensors for Non-Invasive Sweat Diagnostics.
Biosensors (Basel). 2021 Jul 23;11(8):245. doi: 10.3390/bios11080245.
10
Skin-Interfaced Wearable Sweat Sensors for Precision Medicine.
Chem Rev. 2023 Apr 26;123(8):5049-5138. doi: 10.1021/acs.chemrev.2c00823. Epub 2023 Mar 27.

引用本文的文献

1
Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications.
J Funct Biomater. 2025 May 8;16(5):166. doi: 10.3390/jfb16050166.
2
Two-phase Porous Media Flow Model Based on the Incompressible Navier-Stokes Equation.
Anal Chem. 2024 Apr 2;96(13):5265-5273. doi: 10.1021/acs.analchem.3c05982. Epub 2024 Mar 19.
4
PCL/PEO Polymer Membrane Prevents Biofouling in Wearable Detection Sensors.
Membranes (Basel). 2023 Aug 12;13(8):728. doi: 10.3390/membranes13080728.
5
Skin-Interfaced Wearable Sweat Sensors for Precision Medicine.
Chem Rev. 2023 Apr 26;123(8):5049-5138. doi: 10.1021/acs.chemrev.2c00823. Epub 2023 Mar 27.
6
A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices.
Sensors (Basel). 2022 Oct 10;22(19):7670. doi: 10.3390/s22197670.
7
Wearable microfluidic patch with integrated capillary valves and pumps for sweat management and multiple biomarker analysis.
Biomicrofluidics. 2022 Jul 29;16(4):044104. doi: 10.1063/5.0092084. eCollection 2022 Jul.
8
Osmotically Enabled Wearable Patch for Sweat Harvesting and Lactate Quantification.
Micromachines (Basel). 2021 Dec 4;12(12):1513. doi: 10.3390/mi12121513.
9
Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples-A Review.
Biosensors (Basel). 2021 Aug 3;11(8):260. doi: 10.3390/bios11080260.
10
State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics.
ACS Sens. 2021 Aug 27;6(8):2787-2801. doi: 10.1021/acssensors.1c01133. Epub 2021 Aug 5.

本文引用的文献

2
Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels.
Lab Chip. 2020 Jan 7;20(1):168-174. doi: 10.1039/c9lc00911f. Epub 2019 Dec 4.
4
Label-Free Optical Detection of Multiple Biomarkers in Sweat, Plasma, Urine, and Saliva.
ACS Sens. 2019 May 24;4(5):1346-1357. doi: 10.1021/acssensors.9b00301. Epub 2019 Apr 2.
10
A wearable patch for continuous monitoring of sweat electrolytes during exertion.
Lab Chip. 2018 Aug 21;18(17):2632-2641. doi: 10.1039/c8lc00510a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验