Suppr超能文献

疟原虫药物靶点枯草杆菌蛋白酶样 SUB1 的肽 α-酮酰胺抑制剂的结构-活性关系和结合模式的研究进展。

Insights from structure-activity relationships and the binding mode of peptidic α-ketoamide inhibitors of the malaria drug target subtilisin-like SUB1.

机构信息

Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France.

Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France.

出版信息

Eur J Med Chem. 2024 Apr 5;269:116308. doi: 10.1016/j.ejmech.2024.116308. Epub 2024 Mar 11.

Abstract

Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 μM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC value of 23 μM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.

摘要

疟原虫多重耐药性,包括对青蒿素的耐药性,严重威胁着疟疾的治疗和控制。因此,急需新的药物,理想情况下是针对目前药物尚未针对的不同寄生虫阶段。SUB1 蛋白酶由于在寄生虫从宿主细胞逸出过程中发挥重要作用,涉及肝期和血液期,作为潜在的新靶标,它将符合上述标准。我们在此报告基于 SUB1 蛋白酶底物的 α-酮酰胺 SUB1 拟肽抑制剂的合成以及生物学和结构评估,这些抑制剂包含 P4-P2'位。通过单独取代参考化合物 1(MAM-117,Ac-Ile-Thr-Ala-AlaCO-Asp-Glu(Oall)-NH)的每个位置,我们更好地确定了 SUB1 结合的结构决定因素。我们首先确定了化合物 8,其对 PfSUB1 和 PvSUB1 的 IC 值分别为 50 和 570 nM(与 1 相比,约高 3.5 倍)。化合物 8 在 100 μM 时可抑制 37%的 PfSUB1 裂殖子出芽。通过增加化合物的整体疏水性,我们可以提高 PfSUB1 抑制水平和抗寄生虫活性,如化合物 40 所示(对 PvSUB1 和 PfSUB1 的 IC 值分别为 12 和 10 nM,对 PfSUB1 裂殖子出芽的 IC 值为 23 μM)。我们还发现,8 对 SUB1 相对于三种哺乳动物丝氨酸肽酶具有高度选择性,支持该化合物的有前途的价值。最后,我们解决了 SUB1-抑制剂复合物的多个晶体 3D 结构,包括与 8 的复合物,以破译这些化合物的结合模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验