文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新辅助纳武利尤单抗或纳武利尤单抗联合 LAG-3 抑制剂 relatlimab 治疗可切除食管/胃食管交界处癌:一项 Ib 期试验和 ctDNA 分析。

Neoadjuvant nivolumab or nivolumab plus LAG-3 inhibitor relatlimab in resectable esophageal/gastroesophageal junction cancer: a phase Ib trial and ctDNA analyses.

机构信息

The Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.

The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Nat Med. 2024 Apr;30(4):1023-1034. doi: 10.1038/s41591-024-02877-z. Epub 2024 Mar 19.


DOI:10.1038/s41591-024-02877-z
PMID:38504015
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11031406/
Abstract

Gastroesophageal cancer dynamics and drivers of clinical responses with immune checkpoint inhibitors (ICI) remain poorly understood. Potential synergistic activity of dual programmed cell death protein 1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) inhibition may help improve immunotherapy responses for these tumors. We report a phase Ib trial that evaluated neoadjuvant nivolumab (Arm A, n = 16) or nivolumab-relatlimab (Arm B, n = 16) in combination with chemoradiotherapy in 32 patients with resectable stage II/stage III gastroesophageal cancer together with an in-depth evaluation of pathological, molecular and functional immune responses. Primary endpoint was safety; the secondary endpoint was feasibility; exploratory endpoints included pathological complete (pCR) and major pathological response (MPR), recurrence-free survival (RFS) and overall survival (OS). The study met its primary safety endpoint in Arm A, although Arm B required modification to mitigate toxicity. pCR and MPR rates were 40% and 53.5% for Arm A and 21.4% and 57.1% for Arm B. Most common adverse events were fatigue, nausea, thrombocytopenia and dermatitis. Overall, 2-year RFS and OS rates were 72.5% and 82.6%, respectively. Higher baseline programmed cell death ligand 1 (PD-L1) and LAG-3 expression were associated with deeper pathological responses. Exploratory analyses of circulating tumor DNA (ctDNA) showed that patients with undetectable ctDNA post-ICI induction, preoperatively and postoperatively had a significantly longer RFS and OS; ctDNA clearance was reflective of neoantigen-specific T cell responses. Our findings provide insights into the safety profile of combined PD-1 and LAG-3 blockade in gastroesophageal cancer and highlight the potential of ctDNA analysis to dynamically assess systemic tumor burden during neoadjuvant ICI that may open a therapeutic window for future intervention. ClinicalTrials.gov registration: NCT03044613 .

摘要

胃食管交界癌的动力学和免疫检查点抑制剂(ICI)临床反应的驱动因素仍知之甚少。双重程序性细胞死亡蛋白 1(PD-1)和淋巴细胞激活基因 3(LAG-3)抑制的潜在协同活性可能有助于提高这些肿瘤的免疫治疗反应。我们报告了一项 Ib 期临床试验,该试验评估了新辅助纳武单抗(A 组,n=16)或纳武单抗联合 relatlimab(B 组,n=16)联合放化疗在可切除的 II 期/III 期胃食管交界癌患者中的应用,同时对病理、分子和功能免疫反应进行了深入评估。主要终点是安全性;次要终点是可行性;探索性终点包括病理完全缓解(pCR)和主要病理缓解(MPR)、无复发生存(RFS)和总生存(OS)。该研究在 A 组达到了主要的安全性终点,尽管 B 组需要修改以减轻毒性。A 组的 pCR 和 MPR 率分别为 40%和 53.5%,B 组分别为 21.4%和 57.1%。最常见的不良反应是疲劳、恶心、血小板减少和皮疹。总的来说,2 年 RFS 和 OS 率分别为 72.5%和 82.6%。较高的基线程序性死亡配体 1(PD-L1)和 LAG-3 表达与更深的病理反应相关。对循环肿瘤 DNA(ctDNA)的探索性分析表明,ICI 诱导后、术前和术后 ctDNA 不可检测的患者 RFS 和 OS 显著延长;ctDNA 清除反映了新抗原特异性 T 细胞反应。我们的研究结果为胃食管交界癌中 PD-1 和 LAG-3 联合阻断的安全性概况提供了见解,并强调了 ctDNA 分析在新辅助 ICI 期间动态评估全身肿瘤负担的潜力,这可能为未来的干预打开治疗窗口。临床试验注册:NCT03044613。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/338b0c4557f2/41591_2024_2877_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/083595e2a448/41591_2024_2877_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/000c3bd81207/41591_2024_2877_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/eea275a18e40/41591_2024_2877_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/b03a49a9cd3f/41591_2024_2877_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/da3bac9c632f/41591_2024_2877_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/48ec9d00c9a7/41591_2024_2877_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/afb49106779b/41591_2024_2877_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/7a9cf607ba8f/41591_2024_2877_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/424e657e52b2/41591_2024_2877_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/80b691c5a707/41591_2024_2877_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/1ac9a74f964e/41591_2024_2877_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/1c2a1e12a730/41591_2024_2877_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/ae78cacc4408/41591_2024_2877_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/338b0c4557f2/41591_2024_2877_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/083595e2a448/41591_2024_2877_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/000c3bd81207/41591_2024_2877_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/eea275a18e40/41591_2024_2877_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/b03a49a9cd3f/41591_2024_2877_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/da3bac9c632f/41591_2024_2877_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/48ec9d00c9a7/41591_2024_2877_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/afb49106779b/41591_2024_2877_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/7a9cf607ba8f/41591_2024_2877_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/424e657e52b2/41591_2024_2877_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/80b691c5a707/41591_2024_2877_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/1ac9a74f964e/41591_2024_2877_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/1c2a1e12a730/41591_2024_2877_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/ae78cacc4408/41591_2024_2877_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/11031406/338b0c4557f2/41591_2024_2877_Fig14_ESM.jpg

相似文献

[1]
Neoadjuvant nivolumab or nivolumab plus LAG-3 inhibitor relatlimab in resectable esophageal/gastroesophageal junction cancer: a phase Ib trial and ctDNA analyses.

Nat Med. 2024-4

[2]
Neoadjuvant nivolumab with or without relatlimab in resectable non-small-cell lung cancer: a randomized phase 2 trial.

Nat Med. 2024-6

[3]
Effects of perioperative treatment of resectable adenocarcinoma of esophagogastric junction by immunotherapy (Adebrelimab) combined with chemotherapy (XELOX): protocol for a single-center, open-labeled study (AEGIS trial, neoadjuvant immunochemotherapy).

BMC Cancer. 2025-2-4

[4]
Neoadjuvant atezolizumab plus chemotherapy in gastric and gastroesophageal junction adenocarcinoma: the phase 2 PANDA trial.

Nat Med. 2024-2

[5]
First-Line Nivolumab and Relatlimab Plus Chemotherapy for Gastric or Gastroesophageal Junction Adenocarcinoma: The Phase II RELATIVITY-060 Study.

J Clin Oncol. 2024-6-10

[6]
Nivolumab combination therapies in patients with advanced gastric and gastroesophageal junction cancer: the phase II FRACTION gastric cancer study.

ESMO Open. 2025-2

[7]
SOX combined with tislelizumab and low-dose radiation therapy for the neoadjuvant treatment of locally advanced gastric/gastroesophageal junction adenocarcinoma: study protocol for a prospective, multicenter, single-arm, phase Ib/II clinical trial.

Front Immunol. 2024

[8]
Efficacy and safety of neoadjuvant sintilimab in combination with FLOT chemotherapy in patients with HER2-negative locally advanced gastric or gastroesophageal junction adenocarcinoma: an investigator-initiated, single-arm, open-label, phase II study.

Int J Surg. 2024-4-1

[9]
Efficacy and safety of S-1 plus oxaliplatin combined with apatinib and camrelizumab as neoadjuvant therapy for patients with locally advanced gastric or gastroesophageal junction adenocarcinoma: a protocol for a single-arm phase II trial.

Updates Surg. 2025-1

[10]
Effect of prior and first-line immunotherapy on baseline immune biomarkers and modulation of the tumor microenvironment in response to nivolumab and relatlimab combination therapy in patients with melanoma from RELATIVITY-020.

J Immunother Cancer. 2025-2-25

引用本文的文献

[1]
Perioperative nivolumab or nivolumab plus ipilimumab in resectable diffuse pleural mesothelioma: a phase 2 trial and ctDNA analyses.

Nat Med. 2025-9-8

[2]
Harnessing biomarkers to guide immunotherapy in esophageal cancer: toward precision oncology.

Clin Transl Oncol. 2025-9-6

[3]
The role of neoantigens and tumor mutational burden in cancer immunotherapy: advances, mechanisms, and perspectives.

J Hematol Oncol. 2025-9-2

[4]
Strategies to Overcome PD-1/PD-L1 Blockade Resistance: Focusing on Combination with Immune Checkpoint Blockades.

J Cancer. 2025-7-24

[5]
Progress of immune checkpoint inhibitors in gastric cancer.

World J Gastrointest Oncol. 2025-8-15

[6]
Application of Immune Checkpoint Inhibitors in Cancer.

MedComm (2020). 2025-8-10

[7]
Neoantigen-driven personalized tumor therapy: An update from discovery to clinical application.

Chin Med J (Engl). 2025-9-5

[8]
Immunotherapy in Gastrointestinal Cancers: Current Insights.

Clin Pharmacol. 2025-7-23

[9]
Radiotherapy combined with anlotinib in locoregional recurrent esophageal squamous cell carcinoma after radical surgery: a prospective, Phase II clinical trial.

Br J Cancer. 2025-7-16

[10]
Therapeutic potential of targeting LAG-3 in cancer.

J Immunother Cancer. 2025-7-8

本文引用的文献

[1]
Neoadjuvant and adjuvant pembrolizumab plus chemotherapy in locally advanced gastric or gastro-oesophageal cancer (KEYNOTE-585): an interim analysis of the multicentre, double-blind, randomised phase 3 study.

Lancet Oncol. 2024-2

[2]
ctDNA response after pembrolizumab in non-small cell lung cancer: phase 2 adaptive trial results.

Nat Med. 2023-10

[3]
Trimodality therapy versus perioperative chemotherapy in the management of locally advanced adenocarcinoma of the oesophagus and oesophagogastric junction (Neo-AEGIS): an open-label, randomised, phase 3 trial.

Lancet Gastroenterol Hepatol. 2023-11

[4]
Cell-free DNA approaches for cancer early detection and interception.

J Immunother Cancer. 2023-9

[5]
Neoadjuvant immune checkpoint blockade: A window of opportunity to advance cancer immunotherapy.

Cancer Cell. 2023-9-11

[6]
Genomic approaches to cancer and minimal residual disease detection using circulating tumor DNA.

J Immunother Cancer. 2023-6

[7]
Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gastrointestinal cancer.

J Immunother Cancer. 2023-6

[8]
Dynamics of Sequence and Structural Cell-Free DNA Landscapes in Small-Cell Lung Cancer.

Clin Cancer Res. 2023-6-13

[9]
Liquid biopsy approaches to capture tumor evolution and clinical outcomes during cancer immunotherapy.

J Immunother Cancer. 2023-1

[10]
Liquid biopsies coming of age: biology, emerging technologies, and clinical translation- An introduction to the JITC expert opinion special review series on liquid biopsies.

J Immunother Cancer. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索