人工智能辅助对放射科医生影响的异质性和预测因素。
Heterogeneity and predictors of the effects of AI assistance on radiologists.
机构信息
Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
Department of Computer Science, Stanford University, Stanford, CA, USA.
出版信息
Nat Med. 2024 Mar;30(3):837-849. doi: 10.1038/s41591-024-02850-w. Epub 2024 Mar 19.
The integration of artificial intelligence (AI) in medical image interpretation requires effective collaboration between clinicians and AI algorithms. Although previous studies demonstrated the potential of AI assistance in improving overall clinician performance, the individual impact on clinicians remains unclear. This large-scale study examined the heterogeneous effects of AI assistance on 140 radiologists across 15 chest X-ray diagnostic tasks and identified predictors of these effects. Surprisingly, conventional experience-based factors, such as years of experience, subspecialty and familiarity with AI tools, fail to reliably predict the impact of AI assistance. Additionally, lower-performing radiologists do not consistently benefit more from AI assistance, challenging prevailing assumptions. Instead, we found that the occurrence of AI errors strongly influences treatment outcomes, with inaccurate AI predictions adversely affecting radiologist performance on the aggregate of all pathologies and on half of the individual pathologies investigated. Our findings highlight the importance of personalized approaches to clinician-AI collaboration and the importance of accurate AI models. By understanding the factors that shape the effectiveness of AI assistance, this study provides valuable insights for targeted implementation of AI, enabling maximum benefits for individual clinicians in clinical practice.
人工智能(AI)在医学影像解读中的整合需要临床医生和 AI 算法之间进行有效的协作。尽管之前的研究表明 AI 辅助在提高整体临床医生绩效方面具有潜力,但 AI 辅助对临床医生的个体影响尚不清楚。这项大规模研究考察了 AI 辅助对 15 项胸部 X 光诊断任务中的 140 名放射科医生的异质影响,并确定了这些影响的预测因素。令人惊讶的是,传统的基于经验的因素,如工作年限、亚专业和对 AI 工具的熟悉程度,无法可靠地预测 AI 辅助的影响。此外,表现较差的放射科医生并不总是从 AI 辅助中受益更多,这挑战了普遍的假设。相反,我们发现 AI 错误的发生强烈影响治疗结果,不准确的 AI 预测对所有病变和一半所研究的个别病变的放射科医生的综合表现产生不利影响。我们的研究结果强调了针对临床医生- AI 协作的个性化方法的重要性,以及准确的 AI 模型的重要性。通过了解影响 AI 辅助效果的因素,这项研究为有针对性地实施 AI 提供了有价值的见解,使个体临床医生在临床实践中能够获得最大的收益。