Suppr超能文献

深度学习在胸部 X 光诊断中的应用:有或没有人工智能辅助的放射科医生之间的竞争。

Deep Learning for Chest X-ray Diagnosis: Competition Between Radiologists with or Without Artificial Intelligence Assistance.

机构信息

Department of Radiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.

Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.

出版信息

J Imaging Inform Med. 2024 Jun;37(3):922-934. doi: 10.1007/s10278-024-00990-6. Epub 2024 Feb 8.

Abstract

This study aimed to assess the performance of a deep learning algorithm in helping radiologist achieve improved efficiency and accuracy in chest radiograph diagnosis. We adopted a deep learning algorithm to concurrently detect the presence of normal findings and 13 different abnormalities in chest radiographs and evaluated its performance in assisting radiologists. Each competing radiologist had to determine the presence or absence of these signs based on the label provided by the AI. The 100 radiographs were randomly divided into two sets for evaluation: one without AI assistance (control group) and one with AI assistance (test group). The accuracy, false-positive rate, false-negative rate, and analysis time of 111 radiologists (29 senior, 32 intermediate, and 50 junior) were evaluated. A radiologist was given an initial score of 14 points for each image read, with 1 point deducted for an incorrect answer and 0 points given for a correct answer. The final score for each doctor was automatically calculated by the backend calculator. We calculated the mean scores of each radiologist in the two groups (the control group and the test group) and calculated the mean scores to evaluate the performance of the radiologists with and without AI assistance. The average score of the 111 radiologists was 597 (587-605) in the control group and 619 (612-626) in the test group (P < 0.001). The time spent by the 111 radiologists on the control and test groups was 3279 (2972-3941) and 1926 (1710-2432) s, respectively (P < 0.001). The performance of the 111 radiologists in the two groups was evaluated by the area under the receiver operating characteristic curve (AUC). The radiologists showed better performance on the test group of radiographs in terms of normal findings, pulmonary fibrosis, heart shadow enlargement, mass, pleural effusion, and pulmonary consolidation recognition, with AUCs of 1.0, 0.950, 0.991, 1.0, 0.993, and 0.982, respectively. The radiologists alone showed better performance in aortic calcification (0.993), calcification (0.933), cavity (0.963), nodule (0.923), pleural thickening (0.957), and rib fracture (0.987) recognition. This competition verified the positive effects of deep learning methods in assisting radiologists in interpreting chest X-rays. AI assistance can help to improve both the efficacy and efficiency of radiologists.

摘要

本研究旨在评估深度学习算法在帮助放射科医生提高胸部 X 光诊断效率和准确性方面的表现。我们采用深度学习算法同时检测胸部 X 光片中正常表现和 13 种不同异常,并评估其在辅助放射科医生方面的性能。每位竞争的放射科医生都必须根据 AI 提供的标签确定这些征象的存在或不存在。100 张胸片被随机分为两组进行评估:一组没有 AI 辅助(对照组),一组有 AI 辅助(测试组)。评估了 111 名放射科医生(29 名高级、32 名中级和 50 名初级)的准确性、假阳性率、假阴性率和分析时间。放射科医生对每张图像的初始得分为 14 分,答错扣 1 分,答对不扣分。每位医生的最终分数由后端计算器自动计算。我们计算了两组(对照组和测试组)中每位放射科医生的平均分数,并计算了平均分数,以评估有和没有 AI 辅助的放射科医生的表现。111 名放射科医生在对照组的平均分数为 597(587-605),在测试组的平均分数为 619(612-626)(P < 0.001)。111 名放射科医生在对照组和测试组的时间分别为 3279(2972-3941)和 1926(1710-2432)秒(P < 0.001)。通过受试者工作特征曲线下面积(AUC)评估两组 111 名放射科医生的表现。在测试组的胸片中,放射科医生在正常表现、肺纤维化、心影增大、肿块、胸腔积液和肺部实变识别方面表现更好,AUC 分别为 1.0、0.950、0.991、1.0、0.993 和 0.982。放射科医生在主动脉钙化(0.993)、钙化(0.933)、空洞(0.963)、结节(0.923)、胸膜增厚(0.957)和肋骨骨折(0.987)识别方面表现更好。本次竞赛验证了深度学习方法在辅助放射科医生解读胸部 X 光片方面的积极影响。AI 辅助可以提高放射科医生的疗效和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1879/11169143/a39d982fec17/10278_2024_990_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验