Suppr超能文献

临床实践中用于骨折诊断的人工智能:系统实施人工智能的四种方法及其对人工智能有效性的影响。

AI for fracture diagnosis in clinical practice: Four approaches to systematic AI-implementation and their impact on AI-effectiveness.

作者信息

Loeffen Daan V, Zijta Frank M, Boymans Tim A, Wildberger Joachim E, Nijssen Estelle C

机构信息

Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands.

Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; CAPHRI Care and Public Health Research Institute, Maastricht University, the Netherlands.

出版信息

Eur J Radiol. 2025 Jun;187:112113. doi: 10.1016/j.ejrad.2025.112113. Epub 2025 Apr 14.

Abstract

PURPOSE

Artificial Intelligence (AI) has been shown to enhance fracture-detection-accuracy, but the most effective AI-implementation in clinical practice is less well understood. In the current study, four approaches to AI-implementation are evaluated for their impact on AI-effectiveness.

MATERIALS AND METHODS

Retrospective single-center study based on all consecutive, around-the-clock radiographic examinations for suspected fractures, and accompanying clinical-practice radiologist-diagnoses, between January and March 2023. These image-sets were independently analysed by a dedicated bone-fracture-detection-AI. Findings were combined with radiologist clinical-practice diagnoses to simulate the four AI-implementation methods deemed most relevant to clinical workflows: AI-standalone (radiologist-findings not consulted); AI-problem-solving (AI-findings consulted when radiologist in doubt); AI-triage (radiologist-findings consulted when AI in doubt); and AI-safety net (AI-findings consulted when radiologist diagnosis negative). Reference-standard diagnoses were established by two senior musculoskeletal-radiologists (by consensus in cases of disagreement). Radiologist- and radiologist + AI diagnoses were compared for false negatives (FN), false positives (FP) and their clinical consequences. Experience-level-subgroups radiologists-in-training-, non-musculoskeletal-radiologists, and dedicated musculoskeletal-radiologists were analysed separately.

RESULTS

1508 image-sets were included (1227 unique patients; 40 radiologist-readers). Radiologist results were: 2.7 % FN (40/1508), 28 with clinical consequences; 1.2 % FP (18/1508), 2 received full-fracture treatments (11.1 %). All AI-implementation methods changed overall FN and FP with statistical significance (p < 0.001): AI-standalone 1.5 % FN (23/1508; 11 consequences), 6.8 % FP (103/1508); AI-problem-solving 3.2 % FN (48/1508; 31 consequences), 0.6 % FP (9/1508); AI-triage 2.1 % FN (32/1508; 18 consequences), 1.7 % FP (26/1508); AI-safety net 0.07 % FN (1/1508; 1 consequence), 7.6 % FP (115/1508). Subgroups show similar trends, except AI-triage increased FN for all subgroups except radiologists-in-training.

CONCLUSION

Implementation methods have a large impact on AI-effectiveness. These results suggest AI should not be considered for problem-solving or triage at this time; AI standalone performs better than either and may be a source of assistance where radiologists are unavailable. Best results were obtained implementing AI as safety net, which eliminates missed fractures with serious clinical consequences; even though false positives are increased, unnecessary treatments are limited.

摘要

目的

人工智能(AI)已被证明可提高骨折检测的准确性,但在临床实践中最有效的AI应用方式尚不太清楚。在本研究中,评估了四种AI应用方式对AI有效性的影响。

材料与方法

这是一项回顾性单中心研究,基于2023年1月至3月期间所有连续的、全天候的疑似骨折的影像学检查以及临床放射科医生的诊断结果。这些图像集由专门的骨折检测AI进行独立分析。将结果与放射科医生的临床诊断相结合,以模拟四种被认为与临床工作流程最相关的AI应用方法:独立AI(不参考放射科医生的结果);AI问题解决(当放射科医生有疑问时参考AI结果);AI分诊(当AI有疑问时参考放射科医生的结果);以及AI安全网(当放射科医生诊断为阴性时参考AI结果)。由两名资深肌肉骨骼放射科医生建立参考标准诊断(如有分歧则通过共识确定)。比较放射科医生以及放射科医生 + AI诊断的假阴性(FN)、假阳性(FP)及其临床后果。分别分析了不同经验水平的亚组,包括实习放射科医生、非肌肉骨骼放射科医生和专业肌肉骨骼放射科医生。

结果

纳入了1508个图像集(1227名不同患者;40名放射科阅片者)。放射科医生的结果为:2.7%的FN(40/1508),其中28例有临床后果;1.2%的FP(18/1508),其中2例接受了完全骨折治疗(11.1%)。所有AI应用方法均使总体FN和FP发生了具有统计学意义的变化(p < 0.001):独立AI为1.5%的FN(23/1508;11例有后果),6.8%的FP(103/1508);AI问题解决为3.2%的FN(48/1508;31例有后果),0.6%的FP(9/1508);AI分诊为2.1%的FN(32/1508;18例有后果),1.7%的FP(26/1508);AI安全网为0.07%的FN(1/1508;1例有后果),7.6%的FP(115/1508)。亚组显示出类似趋势,除了AI分诊在实习放射科医生以外的所有亚组中增加了FN。

结论

应用方式对AI有效性有很大影响。这些结果表明,目前不应将AI用于问题解决或分诊;独立AI的表现优于这两者,并且在没有放射科医生的情况下可能是一种辅助手段。将AI作为安全网应用可获得最佳结果,这消除了具有严重临床后果的漏诊骨折;尽管假阳性增加,但不必要的治疗是有限的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验