Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
Nat Commun. 2024 Mar 19;15(1):2359. doi: 10.1038/s41467-024-46132-y.
Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.
血压(BP)调节的遗传机制仍未得到明确界定。我们利用肾脏特异性表观基因组注释和 3D 基因组信息,为 700 个人类肾脏的全转录组关联研究生成和验证了基因表达预测模型。我们确定了 889 个与 BP 相关的肾脏基因,其中 399 个被优先确定为 BP 调节的贡献者。肾脏蛋白质组和 microRNAome 的推断揭示了 97 种与 BP 相关的肾脏蛋白质和 11 种 miRNA。与血浆蛋白质组学和代谢组学的整合阐明了几种肾脏 BP 基因(SLC5A11、AGMAT、AGT 分别)下游效应物肌醇、4-胍基丁酸和血管紧张素原的循环水平。我们表明,肾脏表达的遗传决定减少可能模拟罕见的功能丧失变异对肾脏 mRNA/蛋白质的影响,并导致 BP 升高(例如,ENPEP)。我们证明了从尿液中采集的细胞之间的蛋白质编码基因表达具有很强的相关性(r=0.81),突出了尿液细胞转录组学的诊断潜力。我们发现腺苷酸环化酶激活剂是高血压的再利用机会,并说明了抗癌药物(例如微管蛋白聚合抑制剂)升高 BP 的作用的实例。总的来说,我们的研究为 BP 的遗传调节提供了新的生物学见解,有可能推动高血压的临床转化。