Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece.
Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus Alexandroupolis, 68100, Greece.
Curr Drug Metab. 2024;25(2):91-95. doi: 10.2174/0113892002296707240311105527.
BACKGROUND: Fluoropyrimidine-induced toxicity is a main limitation of therapy. Currently, polymorphisms in the DPYD gene, which encodes the 5-FU activation enzyme dihydropyrimidine dehydrogenase (DPD), are used to adjust the dosage and prevent toxicity. Despite the predictive value of DPYD genotyping, a great proportion of fluoropyrimidine toxicity cannot be solely explained by DPYD variations. OBJECTIVE: We herein summarize additional sources of DPD enzyme activity variability, spanning from epigenetic regulation of DPYD expression, factors potentially inducing protein modifications, as well as drug-enzyme interactions that contribute to fluoropyrimidine toxicity. RESULTS: While seminal studies provided evidence that DPYD promoter methylation downregulates DPD expression, the association of DPYD methylation with fluoropyrimidine toxicity was not replicated in clinical studies. Different non-coding RNA molecules, such as microRNA, piwi-RNAs, circular-RNAs and long non-coding RNAs, are involved in post-transcriptional DPYD regulation. DPD protein modifications and environmental factors affecting enzyme activity may also add a proportion to the pooled variability of DPD enzyme activity. Lastly, DPD-drug interactions are common in therapeutics, with the most well-characterized paradigm the withdrawal of sorivudine due to fluoropyrimidine toxicity deaths in 5-FU treated cancer patients; a mechanism involving DPD severe inhibition. CONCLUSIONS: DPYD polymorphisms are the main source of DPD variability. A study on DPYD epigenetics (both transcriptionally and post-transcriptionally) holds promise to provide insights into molecular pathways of fluoropyrimidine toxicity. Additional post-translational DPD modifications, as well as DPD inhibition by other drugs, may explain a proportion of enzyme activity variability. Therefore, there is still a lot we can learn about the DPYD/DPD fluoropyrimidine-induced toxicity machinery.
背景:氟嘧啶类药物诱导的毒性是治疗的主要限制因素。目前,DPYD 基因(编码氟尿嘧啶激活酶二氢嘧啶脱氢酶 [DPD])的多态性被用于调整剂量和预防毒性。尽管 DPYD 基因分型具有预测价值,但很大一部分氟嘧啶类药物毒性不能仅用 DPYD 变异来解释。
目的:本文总结了 DPD 酶活性变异性的其他来源,包括 DPYD 表达的表观遗传调控、可能诱导蛋白修饰的因素,以及导致氟嘧啶类药物毒性的药物-酶相互作用。
结果:虽然开创性的研究提供了证据表明 DPYD 启动子甲基化下调了 DPD 的表达,但 DPYD 甲基化与氟嘧啶类药物毒性的关联在临床研究中并未得到证实。不同的非编码 RNA 分子,如 microRNA、piwi-RNAs、环状-RNAs 和长非编码 RNA,参与了 DPYD 的转录后调控。DPD 蛋白修饰和影响酶活性的环境因素也可能为 DPD 酶活性的总变异性增加一部分。最后,DPD-药物相互作用在治疗中很常见,最著名的范例是由于氟尿嘧啶类药物治疗的癌症患者中sorivudine 导致的氟嘧啶类药物毒性死亡而停用;这一机制涉及 DPD 的严重抑制。
结论:DPYD 多态性是 DPD 变异性的主要来源。对 DPYD 表观遗传学(转录和转录后)的研究有望为氟嘧啶类药物毒性的分子途径提供深入了解。DPD 的其他翻译后修饰,以及其他药物对 DPD 的抑制,可能解释了一部分酶活性变异性。因此,我们仍然可以更多地了解 DPYD/DPD 氟嘧啶类药物诱导的毒性机制。
Curr Drug Metab. 2024
Pharmacogenomics. 2023-1
Biochim Biophys Acta Mol Basis Dis. 2016-12-24
BMC Med Genomics. 2024-3-25
Cancers (Basel). 2023-8-1
Front Pharmacol. 2023-5-15
Pharmacogenomics. 2022-11
Front Pharmacol. 2022-6-15
World J Gastrointest Oncol. 2022-3-15
Front Mol Biosci. 2022-1-27
Antioxidants (Basel). 2021-10-29
Eur Rev Med Pharmacol Sci. 2021-4