文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

氟嘧啶类药物毒性:DPYD 的隐藏秘密。

Fluoropyrimidine Toxicity: the Hidden Secrets of DPYD.

机构信息

Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece.

Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus Alexandroupolis, 68100, Greece.

出版信息

Curr Drug Metab. 2024;25(2):91-95. doi: 10.2174/0113892002296707240311105527.


DOI:10.2174/0113892002296707240311105527
PMID:38504562
Abstract

BACKGROUND: Fluoropyrimidine-induced toxicity is a main limitation of therapy. Currently, polymorphisms in the DPYD gene, which encodes the 5-FU activation enzyme dihydropyrimidine dehydrogenase (DPD), are used to adjust the dosage and prevent toxicity. Despite the predictive value of DPYD genotyping, a great proportion of fluoropyrimidine toxicity cannot be solely explained by DPYD variations. OBJECTIVE: We herein summarize additional sources of DPD enzyme activity variability, spanning from epigenetic regulation of DPYD expression, factors potentially inducing protein modifications, as well as drug-enzyme interactions that contribute to fluoropyrimidine toxicity. RESULTS: While seminal studies provided evidence that DPYD promoter methylation downregulates DPD expression, the association of DPYD methylation with fluoropyrimidine toxicity was not replicated in clinical studies. Different non-coding RNA molecules, such as microRNA, piwi-RNAs, circular-RNAs and long non-coding RNAs, are involved in post-transcriptional DPYD regulation. DPD protein modifications and environmental factors affecting enzyme activity may also add a proportion to the pooled variability of DPD enzyme activity. Lastly, DPD-drug interactions are common in therapeutics, with the most well-characterized paradigm the withdrawal of sorivudine due to fluoropyrimidine toxicity deaths in 5-FU treated cancer patients; a mechanism involving DPD severe inhibition. CONCLUSIONS: DPYD polymorphisms are the main source of DPD variability. A study on DPYD epigenetics (both transcriptionally and post-transcriptionally) holds promise to provide insights into molecular pathways of fluoropyrimidine toxicity. Additional post-translational DPD modifications, as well as DPD inhibition by other drugs, may explain a proportion of enzyme activity variability. Therefore, there is still a lot we can learn about the DPYD/DPD fluoropyrimidine-induced toxicity machinery.

摘要

背景:氟嘧啶类药物诱导的毒性是治疗的主要限制因素。目前,DPYD 基因(编码氟尿嘧啶激活酶二氢嘧啶脱氢酶 [DPD])的多态性被用于调整剂量和预防毒性。尽管 DPYD 基因分型具有预测价值,但很大一部分氟嘧啶类药物毒性不能仅用 DPYD 变异来解释。

目的:本文总结了 DPD 酶活性变异性的其他来源,包括 DPYD 表达的表观遗传调控、可能诱导蛋白修饰的因素,以及导致氟嘧啶类药物毒性的药物-酶相互作用。

结果:虽然开创性的研究提供了证据表明 DPYD 启动子甲基化下调了 DPD 的表达,但 DPYD 甲基化与氟嘧啶类药物毒性的关联在临床研究中并未得到证实。不同的非编码 RNA 分子,如 microRNA、piwi-RNAs、环状-RNAs 和长非编码 RNA,参与了 DPYD 的转录后调控。DPD 蛋白修饰和影响酶活性的环境因素也可能为 DPD 酶活性的总变异性增加一部分。最后,DPD-药物相互作用在治疗中很常见,最著名的范例是由于氟尿嘧啶类药物治疗的癌症患者中sorivudine 导致的氟嘧啶类药物毒性死亡而停用;这一机制涉及 DPD 的严重抑制。

结论:DPYD 多态性是 DPD 变异性的主要来源。对 DPYD 表观遗传学(转录和转录后)的研究有望为氟嘧啶类药物毒性的分子途径提供深入了解。DPD 的其他翻译后修饰,以及其他药物对 DPD 的抑制,可能解释了一部分酶活性变异性。因此,我们仍然可以更多地了解 DPYD/DPD 氟嘧啶类药物诱导的毒性机制。

相似文献

[1]
Fluoropyrimidine Toxicity: the Hidden Secrets of DPYD.

Curr Drug Metab. 2024

[2]
Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data.

Lancet Oncol. 2015-10-23

[3]
genotyping and predicting fluoropyrimidine toxicity: where do we stand?

Pharmacogenomics. 2023-1

[4]
Prospective DPYD genotyping to reduce the risk of fluoropyrimidine-induced severe toxicity: Ready for prime time.

Eur J Cancer. 2016-2

[5]
[Dihydropyrimidine déhydrogenase (DPD) deficiency screening and securing of fluoropyrimidine-based chemotherapies: Update and recommendations of the French GPCO-Unicancer and RNPGx networks].

Bull Cancer. 2018-4

[6]
Severe fluoropyrimidine toxicity due to novel and rare DPYD missense mutations, deletion and genomic amplification affecting DPD activity and mRNA splicing.

Biochim Biophys Acta Mol Basis Dis. 2016-12-24

[7]
A novel large intragenic DPYD deletion causing dihydropyrimidine dehydrogenase deficiency: a case report.

BMC Med Genomics. 2024-3-25

[8]
Patients homozygous for DPYD c.1129-5923C>G/haplotype B3 have partial DPD deficiency and require a dose reduction when treated with fluoropyrimidines.

Cancer Chemother Pharmacol. 2016-10

[9]
Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydropyrimidine dehydrogenase activity - Ready for clinical practice?

Cancer Treat Rev. 2016-8-13

[10]
DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis.

Lancet Oncol. 2018-10-19

引用本文的文献

[1]
Direct Oral Anticoagulant-Related Bleeding in Atrial Fibrillation Patients Leads to Promoter Demethylation.

Genes (Basel). 2025-6-9

[2]
Direct oral anticoagulants do not affect miR-27a-3p expression, a regulator of coagulation cascade, in atrial fibrillation patients.

J Thromb Thrombolysis. 2025-6

[3]
Circulating microRNAs and DNA Methylation as Regulators of Direct Oral Anticoagulant Response in Atrial Fibrillation and Key Elements for the Identification of the Mechanism of Action (miR-CRAFT): Study Design and Patient Enrolment.

J Pers Med. 2024-5-24

本文引用的文献

[1]
Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: genotyping to guide chemotherapy dosing in Greece.

Front Pharmacol. 2023-9-14

[2]
PIWI-RNAs Small Noncoding RNAs with Smart Functions: Potential Theranostic Applications in Cancer.

Cancers (Basel). 2023-8-1

[3]
Pharmacogenomic-guided dosing of fluoropyrimidines beyond : time for a polygenic algorithm?

Front Pharmacol. 2023-5-15

[4]
The revolution of pharmaco-omics: ready to open new avenues in materializing precision medicine?

Pharmacogenomics. 2022-11

[5]
Efficacy of S-1 or Capecitabine Plus Oxaliplatin Adjuvant Chemotherapy for Stage II or III Gastric Cancer after Curative Gastrectomy: A Systematic Review and Meta-Analysis.

Cancers (Basel). 2022-8-16

[6]
Importance of Rare Genetic Polymorphisms for 5-Fluorouracil Therapy in the Japanese Population.

Front Pharmacol. 2022-6-15

[7]
RNA-Seq profiling of circular RNAs in human colorectal cancer 5-fluorouracil resistance and potential biomarkers.

World J Gastrointest Oncol. 2022-3-15

[8]
PIWI-Interacting RNAs (piRNAs): Promising Applications as Emerging Biomarkers for Digestive System Cancer.

Front Mol Biosci. 2022-1-27

[9]
Sulfur Administration in Fe-S Cluster Homeostasis.

Antioxidants (Basel). 2021-10-29

[10]
Role of microRNAs in fluoropyrimidine-related toxicity: what we know.

Eur Rev Med Pharmacol Sci. 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索