Reichert Christoph, Sweeney-Reed Catherine M, Hinrichs Hermann, Dürschmid Stefan
Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany.
Front Hum Neurosci. 2024 Mar 4;18:1358809. doi: 10.3389/fnhum.2024.1358809. eCollection 2024.
Commands in brain-computer interface (BCI) applications often rely on the decoding of event-related potentials (ERP). For instance, the P300 potential is frequently used as a marker of attention to an oddball event. Error-related potentials and the N2pc signal are further examples of ERPs used for BCI control. One challenge in decoding brain activity from the electroencephalogram (EEG) is the selection of the most suitable channels and appropriate features for a particular classification approach. Here we introduce a toolbox that enables ERP-based decoding using the full set of channels, while automatically extracting informative components from relevant channels. The strength of our approach is that it handles sequences of stimuli that encode multiple items using binary classification, such as target vs. nontarget events typically used in ERP-based spellers. We demonstrate examples of application scenarios and evaluate the performance of four openly available datasets: a P300-based matrix speller, a P300-based rapid serial visual presentation (RSVP) speller, a binary BCI based on the N2pc, and a dataset capturing error potentials. We show that our approach achieves performances comparable to those in the original papers, with the advantage that only conventional preprocessing is required by the user, while channel weighting and decoding algorithms are internally performed. Thus, we provide a tool to reliably decode ERPs for BCI use with minimal programming requirements.
脑机接口(BCI)应用中的指令通常依赖于对事件相关电位(ERP)的解码。例如,P300电位经常被用作对异常事件注意力的标志。错误相关电位和N2pc信号是用于BCI控制的ERP的进一步示例。从脑电图(EEG)解码大脑活动的一个挑战是为特定分类方法选择最合适的通道和适当的特征。在这里,我们介绍一个工具箱,它能够使用全套通道进行基于ERP的解码,同时自动从相关通道中提取信息成分。我们方法的优势在于它使用二元分类处理编码多个项目的刺激序列,例如基于ERP的拼写器中通常使用的目标与非目标事件。我们展示了应用场景的示例,并评估了四个公开可用数据集的性能:基于P300的矩阵拼写器、基于P300的快速序列视觉呈现(RSVP)拼写器、基于N2pc的二元BCI以及一个捕获错误电位的数据集。我们表明,我们的方法实现了与原始论文相当的性能,优点是用户只需要进行传统的预处理,而通道加权和解码算法在内部执行。因此,我们提供了一种工具,以最少的编程要求可靠地解码用于BCI的ERP。