Suppr超能文献

肌动蛋白细胞骨架:肺癌前期及完全发展期的形态学变化。

The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer.

作者信息

Basu Arkaprabha, Paul Manash K, Weiss Shimon

出版信息

Biophys Rev (Melville). 2022 Dec 30;3(4):041304. doi: 10.1063/5.0096188. eCollection 2022 Dec.

Abstract

Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.

摘要

肌动蛋白是细胞骨架的主要成分,可有多种同工型,每种同工型都具有特别适合其功能的特定属性。然后,这些单体利用三磷酸腺苷水解作为能量来源结合在一起形成聚合物细丝。诸如Arp2/3、VASP、formin、profilin和cofilin等蛋白质在聚合过程中发挥重要作用。这些细丝可通过称为肌动蛋白结合蛋白的蛋白质(如α-肌动蛋白、肌球蛋白、fascin、细丝蛋白、桩蛋白和epsin)进一步连接形成应力纤维。这些应力纤维负责机械转导、维持细胞形状、细胞运动以及细胞内货物运输。癌症转移,特别是上皮-间质转化(EMT),这是该过程的关键步骤之一,伴随着通过Rho相关蛋白激酶、MAPK/ERK和Wnt途径形成粗大的应力纤维。最近,随着“场癌化”的出现,癌前细胞也已被证明具有应力纤维和相关的细胞骨架特征。从蛋白质印迹法、RNA测序到冷冻电镜和荧光成像等分析方法已被用于了解肌动蛋白和相关蛋白质的结构和动力学,包括聚合/解聚。更新的方法包括从荧光图像中量化肌动蛋白细胞骨架的特性,并利用它们来研究生物过程,如EMT。这些图像分析方法利用细丝与噪声或其他伪像相比具有独特结构(曲线状)这一事实来将它们分离。从这些具有指定长度和方向的细丝图像中提取线段。将这些方法与统计分析相结合,已开发出一种用于肺癌细胞EMT及其药物反应的新型报告基因。

相似文献

1
The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer.
Biophys Rev (Melville). 2022 Dec 30;3(4):041304. doi: 10.1063/5.0096188. eCollection 2022 Dec.
4
Reconstitution of the transition from a lamellipodia- to filopodia-like actin network with purified proteins.
Eur J Cell Biol. 2023 Dec;102(4):151367. doi: 10.1016/j.ejcb.2023.151367. Epub 2023 Oct 20.
5
Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP.
EMBO J. 2007 Oct 31;26(21):4597-606. doi: 10.1038/sj.emboj.7601874. Epub 2007 Oct 4.
6
Tropomyosin Isoforms Specify Functionally Distinct Actin Filament Populations In Vitro.
Curr Biol. 2017 Mar 6;27(5):705-713. doi: 10.1016/j.cub.2017.01.018. Epub 2017 Feb 16.
7
Tropomyosin and ADF/cofilin as collaborators and competitors.
Adv Exp Med Biol. 2008;644:232-49. doi: 10.1007/978-0-387-85766-4_18.
8
Nucleation limits the lengths of actin filaments assembled by formin.
Biophys J. 2021 Oct 19;120(20):4442-4456. doi: 10.1016/j.bpj.2021.09.003. Epub 2021 Sep 8.
10
Ena/VASP processive elongation is modulated by avidity on actin filaments bundled by the filopodia cross-linker fascin.
Mol Biol Cell. 2019 Mar 21;30(7):851-862. doi: 10.1091/mbc.E18-08-0500. Epub 2019 Jan 2.

引用本文的文献

1
Vimentin undergoes liquid-liquid phase separation to form droplets which wet and stabilize actin fibers.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2418624122. doi: 10.1073/pnas.2418624122. Epub 2025 Mar 3.

本文引用的文献

2
Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex.
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2115217119. doi: 10.1073/pnas.2115217119. Epub 2022 Mar 2.
3
Myofibril orientation as a metric for characterizing heart disease.
Biophys J. 2022 Feb 15;121(4):565-574. doi: 10.1016/j.bpj.2022.01.009. Epub 2022 Jan 12.
4
4polar-STORM polarized super-resolution imaging of actin filament organization in cells.
Nat Commun. 2022 Jan 13;13(1):301. doi: 10.1038/s41467-022-27966-w.
5
[Advances in lung cancer diagnosis and treatment - a review].
Laeknabladid. 2022 Jan;108(1):17-29. doi: 10.17992/lbl.2022.01.671.
6
A workflow for rapid unbiased quantification of fibrillar feature alignment in biological images.
Front Comput Sci. 2021 Oct;3. doi: 10.3389/fcomp.2021.745831. Epub 2021 Oct 14.
7
Discrete mechanical model of lamellipodial actin network implements molecular clutch mechanism and generates arcs and microspikes.
PLoS Comput Biol. 2021 Oct 18;17(10):e1009506. doi: 10.1371/journal.pcbi.1009506. eCollection 2021 Oct.
10
Vimentin regulates the assembly and function of matrix adhesions.
Wound Repair Regen. 2021 Jul;29(4):602-612. doi: 10.1111/wrr.12920. Epub 2021 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验