Suppr超能文献

提升院前环境中的患者安全:运用自然语言处理和机器学习分析患者对非转运决策的看法。

Enhancing Patient Safety in Prehospital Environment: Analyzing Patient Perspectives on Non-Transport Decisions With Natural Language Processing and Machine Learning.

机构信息

From the Ambulance Service, Hamad Medical Corporation, Doha, Qatar.

Faculty of Health Sciences, Durban University of Technology, Durban, South Africa.

出版信息

J Patient Saf. 2024 Aug 1;20(5):330-339. doi: 10.1097/PTS.0000000000001228. Epub 2024 Mar 23.

Abstract

OBJECTIVE

This research explored the experiences and perspectives of patients declining hospital transportation after receiving prehospital emergency care using advanced computational techniques.

METHOD

Between 15th June and 1st August 2023, 210 patients in Qatar, treated by Hamad Medical Corporation Ambulance Service (HMCAS) but refusing transportation to hospital, were interviewed. Key outcome variables stratified by demographics included "reasons for refusing transport," "satisfaction with HMCAS service," and "postrefusal actions." Responses underwent sentiment analysis and topic modeling using latent Dirichlet allocation. Machine learning models, such as Naïve Bayes, K-nearest neighboring, random forest, and support vector machine, were used to predict patients' subsequent actions.

RESULTS

Participants had an average age of 38.61 ± 19.91 years. The chief complaints were primarily chest and abdominal pains (18.49%; n = 39). Sentiment Analysis revealed a generally favorable perception of HMCAS-provided service. Latent Dirichlet allocation identified two main topics pertaining to refusal reasons and service satisfaction. Naïve Bayes and support vector machine algorithms were most effective in predicting postrefusal actions with an accuracy rate of 81.58%.

CONCLUSIONS

This study highlighted the utility of Natural Language Processing and ML in enhancing our understanding of patient behaviors and sentiments in prehospital settings. These advanced computational methodologies allowed for a nuanced exploration of patient demographics and sentiments, providing insights for Quality Improvement initiatives. The study also advocates for continuously integrating automated feedback mechanisms to improve patient-centered care in the prehospital context. Continuous integration of automated feedback systems is recommended to improve prehospital patient-centered care.

摘要

目的

本研究使用先进的计算技术探索了接受院前急救后拒绝医院交通转运的患者的体验和观点。

方法

2023 年 6 月 15 日至 8 月 1 日,对卡塔尔的 210 名接受哈马德医疗保健公司救护车服务(HMCAS)治疗但拒绝转运至医院的患者进行了访谈。按人口统计学分层的主要结局变量包括“拒绝转运的原因”、“对 HMCAS 服务的满意度”和“拒绝后行动”。通过潜在狄利克雷分配进行响应的情感分析和主题建模。使用朴素贝叶斯、K-最近邻、随机森林和支持向量机等机器学习模型来预测患者的后续行动。

结果

参与者的平均年龄为 38.61 ± 19.91 岁。主要主诉是胸部和腹部疼痛(18.49%;n = 39)。情感分析显示对 HMCAS 提供的服务普遍持肯定态度。潜在狄利克雷分配确定了拒绝原因和服务满意度两个主要主题。朴素贝叶斯和支持向量机算法在预测拒绝后行动方面最有效,准确率为 81.58%。

结论

本研究强调了自然语言处理和机器学习在增强我们对院前环境中患者行为和情绪的理解方面的效用。这些先进的计算方法允许对患者人口统计学和情绪进行细致的探索,为质量改进计划提供了见解。该研究还主张不断整合自动化反馈机制,以改善院前以患者为中心的护理。建议不断整合自动化反馈系统,以改善院前以患者为中心的护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验