Suppr超能文献

整合结构化和非结构化数据以预测急诊严重程度:一项使用基于Transformer的自然语言处理模型的关联和预测研究。

Integrating structured and unstructured data for predicting emergency severity: an association and predictive study using transformer-based natural language processing models.

作者信息

Zhang Xingyu, Wang Yanshan, Jiang Yun, Pacella Charissa B, Zhang Wenbin

机构信息

Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Health Information Management, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

BMC Med Inform Decis Mak. 2024 Dec 5;24(1):372. doi: 10.1186/s12911-024-02793-9.

Abstract

BACKGROUND

Efficient triage in emergency departments (EDs) is critical for timely and appropriate care. Traditional triage systems primarily rely on structured data, but the increasing availability of unstructured data, such as clinical notes, presents an opportunity to enhance predictive models for assessing emergency severity and to explore associations between patient characteristics and severity outcomes. This study aimed to evaluate the effectiveness of combining structured and unstructured data to predict emergency severity more accurately.

METHODS

Data from the 2021 National Hospital Ambulatory Medical Care Survey (NHAMCS) for adult ED patients were used. Emergency severity was categorized into urgent (scores 1-3) and non-urgent (scores 4-5) based on the Emergency Severity Index. Unstructured data, including chief complaints and reasons for visit, were processed using a Bidirectional Encoder Representations from Transformers (BERT) model. Structured data included patient demographics and clinical information. Four machine learning models-Logistic Regression, Random Forest, Gradient Boosting, and Extreme Gradient Boosting-were applied to three data configurations: structured data only, unstructured data only, and combined data. A mean probability model was also created by averaging the predicted probabilities from the structured and unstructured models.

RESULTS

The study included 8,716 adult patients, of whom 74.6% were classified as urgent. Association analysis revealed significant predictors of emergency severity, including older age (OR = 2.13 for patients 65 +), higher heart rate (OR = 1.56 for heart rates > 90 bpm), and specific chronic conditions such as chronic kidney disease (OR = 2.28) and coronary artery disease (OR = 2.55). Gradient Boosting with combined data demonstrated the highest performance, achieving an area under the curve (AUC) of 0.789, an accuracy of 0.726, and a precision of 0.892. The mean probability model also showed improvements over structured-only models.

CONCLUSIONS

Combining structured and unstructured data improved the prediction of emergency severity in ED patients, highlighting the potential for enhanced triage systems. Integrating text data into predictive models can provide more accurate and nuanced severity assessments, improving resource allocation and patient outcomes. Further research should focus on real-time application and validation in diverse clinical settings.

摘要

背景

急诊科的高效分诊对于及时、恰当的治疗至关重要。传统的分诊系统主要依赖结构化数据,但诸如临床记录等非结构化数据的日益普及,为增强评估急诊严重程度的预测模型以及探索患者特征与严重程度结果之间的关联提供了契机。本研究旨在评估结合结构化和非结构化数据以更准确地预测急诊严重程度的有效性。

方法

使用了来自2021年全国医院门诊医疗调查(NHAMCS)的成年急诊患者数据。根据急诊严重程度指数,将急诊严重程度分为紧急(评分1 - 3)和非紧急(评分4 - 5)。使用来自变换器的双向编码器表示(BERT)模型处理包括主诉和就诊原因在内的非结构化数据。结构化数据包括患者人口统计学和临床信息。将四种机器学习模型——逻辑回归、随机森林、梯度提升和极端梯度提升——应用于三种数据配置:仅结构化数据、仅非结构化数据以及组合数据。还通过对结构化和非结构化模型的预测概率求平均创建了一个平均概率模型。

结果

该研究纳入了8716名成年患者,其中74.6%被分类为紧急情况。关联分析揭示了急诊严重程度的显著预测因素,包括年龄较大(65岁及以上患者的优势比[OR]=2.13)、心率较高(心率>90次/分钟时的OR = 1.56)以及特定的慢性疾病,如慢性肾病(OR = 2.28)和冠状动脉疾病(OR = 2.55)。使用组合数据的梯度提升表现出最高性能,曲线下面积(AUC)为0.789,准确率为0.726,精确率为0.892。平均概率模型也比仅使用结构化数据的模型有所改进。

结论

结合结构化和非结构化数据改善了对急诊患者急诊严重程度的预测,凸显了增强分诊系统的潜力。将文本数据整合到预测模型中可以提供更准确、细致入微 的严重程度评估,改善资源分配和患者预后。进一步的研究应侧重于在不同临床环境中的实时应用和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e19/11619330/0efeafc68213/12911_2024_2793_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验