Suppr超能文献

一种使用机器学习和自然语言处理对患者投诉进行分类的智能系统:开发与验证研究。

An Intelligent System for Classifying Patient Complaints Using Machine Learning and Natural Language Processing: Development and Validation Study.

作者信息

Li Xiadong, Shu Qiang, Kong Canhong, Wang Jinhu, Li Gang, Fang Xin, Lou Xiaomin, Yu Gang

机构信息

Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hang Zhou, China.

Patient Service Surveillance Office, Medical Information Department, Hangzhou Red Cross Hospital, Hang Zhou, China.

出版信息

J Med Internet Res. 2025 Jan 8;27:e55721. doi: 10.2196/55721.

Abstract

BACKGROUND

Accurate classification of patient complaints is crucial for enhancing patient satisfaction management in health care settings. Traditional manual methods for categorizing complaints often lack efficiency and precision. Thus, there is a growing demand for advanced and automated approaches to streamline the classification process.

OBJECTIVE

This study aimed to develop and validate an intelligent system for automatically classifying patient complaints using machine learning (ML) and natural language processing (NLP) techniques.

METHODS

An ML-based NLP technology was proposed to extract frequently occurring dissatisfactory words related to departments, staff, and key treatment procedures. A dataset containing 1465 complaint records from 2019 to 2023 was used for training and validation, with an additional 376 complaints from Hangzhou Cancer Hospital serving as an external test set. Complaints were categorized into 4 types-communication problems, diagnosis and treatment issues, management problems, and sense of responsibility concerns. The imbalanced data were balanced using the Synthetic Minority Oversampling Technique (SMOTE) algorithm to ensure equal representation across all categories. A total of 3 ML algorithms (Multifactor Logistic Regression, Multinomial Naive Bayes, and Support Vector Machines [SVM]) were used for model training and validation. The best-performing model was tested using a 5-fold cross-validation on external data.

RESULTS

The original dataset consisted of 719, 376, 260, and 86 records for communication problems, diagnosis and treatment issues, management problems, and sense of responsibility concerns, respectively. The Multifactor Logistic Regression and SVM models achieved weighted average accuracies of 0.89 and 0.93 in the training set, and 0.83 and 0.87 in the internal test set, respectively. Ngram-level term frequency-inverse document frequency did not significantly improve classification performance, with only a marginal 1% increase in precision, recall, and F-score when implementing Ngram-level term frequency-inverse document frequency (n=2) from 0.91 to 0.92. The SVM algorithm performed best in prediction, achieving an average accuracy of 0.91 on the external test set with a 95% CI of 0.87-0.97.

CONCLUSIONS

The NLP-driven SVM algorithm demonstrates effective classification performance in automatically categorizing patient complaint texts. It showed superior performance in both internal and external test sets for communication and management problems. However, caution is advised when using it for classifying sense of responsibility complaints. This approach holds promises for implementation in medical institutions with high complaint volumes and limited resources for addressing patient feedback.

摘要

背景

准确分类患者投诉对于提高医疗机构的患者满意度管理至关重要。传统的手动分类投诉方法往往缺乏效率和准确性。因此,对先进的自动化方法来简化分类过程的需求日益增长。

目的

本研究旨在开发并验证一种使用机器学习(ML)和自然语言处理(NLP)技术自动分类患者投诉的智能系统。

方法

提出了一种基于ML的NLP技术,以提取与科室、工作人员和关键治疗程序相关的频繁出现的不满意词汇。使用一个包含2019年至2023年1465条投诉记录的数据集进行训练和验证,另外将杭州肿瘤医院的376条投诉作为外部测试集。投诉被分为4类——沟通问题、诊断和治疗问题、管理问题以及责任感问题。使用合成少数过采样技术(SMOTE)算法对不平衡数据进行平衡,以确保所有类别都有平等的代表性。总共使用3种ML算法(多因素逻辑回归、多项式朴素贝叶斯和支持向量机[SVM])进行模型训练和验证。在外部数据上使用5折交叉验证对性能最佳的模型进行测试。

结果

原始数据集分别包含719条、376条、260条和86条关于沟通问题、诊断和治疗问题、管理问题以及责任感问题的记录。多因素逻辑回归和SVM模型在训练集中的加权平均准确率分别为0.89和0.93,在内部测试集中分别为0.83和0.87。Ngram级词频逆文档频率并没有显著提高分类性能,从0.91提升到0.92(n = 2)时,精度、召回率和F值仅略有1%的增加。SVM算法在预测中表现最佳,在外部测试集上的平均准确率为0.91,95%置信区间为0.87 - 0.97。

结论

NLP驱动的SVM算法在自动分类患者投诉文本方面表现出有效的分类性能。它在内部和外部测试集中对沟通和管理问题都表现出卓越的性能。然而,在用于分类责任感投诉时需谨慎。这种方法有望在投诉量高且处理患者反馈资源有限的医疗机构中实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec15/11754990/097405de15a5/jmir_v27i1e55721_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验