Suppr超能文献

肠道腔中富含营养的表面上的细菌相互作用。

Bacterial interactions on nutrient-rich surfaces in the gut lumen.

机构信息

Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA.

Graduate Program in Biological Sciences and Engineering, University of California, Santa Cruz, California, USA.

出版信息

Infect Immun. 2024 Sep 10;92(9):e0048023. doi: 10.1128/iai.00480-23. Epub 2024 Mar 20.

Abstract

The intestinal lumen is a turbulent, semi-fluid landscape where microbial cells and nutrient-rich particles are distributed with high heterogeneity. Major questions regarding the basic physical structure of this dynamic microbial ecosystem remain unanswered. Most gut microbes are non-motile, and it is unclear how they achieve optimum localization relative to concentrated aggregations of dietary glycans that serve as their primary source of energy. In addition, a random spatial arrangement of cells in this environment is predicted to limit sustained interactions that drive co-evolution of microbial genomes. The ecological consequences of random versus organized microbial localization have the potential to control both the metabolic outputs of the microbiota and the propensity for enteric pathogens to participate in proximity-dependent microbial interactions. Here, we review evidence suggesting that several bacterial species adopt organized spatial arrangements in the gut via adhesion. We highlight examples where localization could contribute to antagonism or metabolic interdependency in nutrient degradation, and we discuss imaging- and sequencing-based technologies that have been used to assess the spatial positions of cells within complex microbial communities.

摘要

肠道腔是一个动荡的、半流动的环境,其中微生物细胞和富含营养的颗粒分布具有高度异质性。关于这个动态微生物生态系统的基本物理结构的主要问题仍未得到解答。大多数肠道微生物是不运动的,目前尚不清楚它们如何相对于作为其主要能量来源的集中聚集的膳食糖实现最佳定位。此外,在这种环境中,细胞的随机空间排列预计会限制驱动微生物基因组共同进化的持续相互作用。与随机定位相比,微生物定位的组织化具有控制微生物群落代谢产物输出以及肠道病原体参与近距离依赖的微生物相互作用的倾向的潜力。在这里,我们回顾了一些证据,表明几种细菌通过黏附在肠道中采用有组织的空间排列。我们强调了一些定位可能有助于营养物质降解中的拮抗作用或代谢相互依存的例子,并讨论了用于评估复杂微生物群落中细胞空间位置的成像和测序技术。

相似文献

1
Bacterial interactions on nutrient-rich surfaces in the gut lumen.
Infect Immun. 2024 Sep 10;92(9):e0048023. doi: 10.1128/iai.00480-23. Epub 2024 Mar 20.
2
Nutrient acquisition strategies by gut microbes.
Cell Host Microbe. 2024 Jun 12;32(6):863-874. doi: 10.1016/j.chom.2024.05.011.
3
Exploring strain-level diversity in the gut microbiome through mucin particle adhesion.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0123524. doi: 10.1128/aem.01235-24. Epub 2024 Aug 12.
4
Bifidobacteria and the infant gut: an example of co-evolution and natural selection.
Cell Mol Life Sci. 2018 Jan;75(1):103-118. doi: 10.1007/s00018-017-2672-0. Epub 2017 Oct 5.
6
Gut biogeography of the bacterial microbiota.
Nat Rev Microbiol. 2016 Jan;14(1):20-32. doi: 10.1038/nrmicro3552. Epub 2015 Oct 26.
7
[Advances in host-microbe metabolic axis].
Wei Sheng Wu Xue Bao. 2017 Feb 4;57(2):161-9.
9
Gut dopamine kick: How gut microbes turn on host receptors to fight pathogens.
Cell Host Microbe. 2024 May 8;32(5):623-624. doi: 10.1016/j.chom.2024.04.011.
10
Selected aspects of the human gut microbiota.
Cell Mol Life Sci. 2018 Jan;75(1):81-82. doi: 10.1007/s00018-017-2669-8. Epub 2017 Oct 6.

引用本文的文献

1
Impact of Parabacteroides distasonis colonization on host microbiome, metabolome, immunity, and diabetes onset.
J Mol Endocrinol. 2025 Aug 28;75(2). doi: 10.1530/JME-25-0025. Print 2025 Aug 1.

本文引用的文献

1
The Ruminococcus bromii amylosome protein Sas6 binds single and double helical α-glucan structures in starch.
Nat Struct Mol Biol. 2024 Feb;31(2):255-265. doi: 10.1038/s41594-023-01166-6. Epub 2024 Jan 4.
2
Lactate cross-feeding between species and contributes to butyrate formation in the human colonic environment.
Appl Environ Microbiol. 2024 Jan 24;90(1):e0101923. doi: 10.1128/aem.01019-23. Epub 2023 Dec 21.
3
Pectin Hydrogels: Gel-Forming Behaviors, Mechanisms, and Food Applications.
Gels. 2023 Sep 9;9(9):732. doi: 10.3390/gels9090732.
4
The gut microbiota and its biogeography.
Nat Rev Microbiol. 2024 Feb;22(2):105-118. doi: 10.1038/s41579-023-00969-0. Epub 2023 Sep 22.
5
A mucin-regulated adhesin determines the spatial organization and inflammatory character of a bacterial symbiont in the vertebrate gut.
Cell Host Microbe. 2023 Aug 9;31(8):1371-1385.e6. doi: 10.1016/j.chom.2023.07.003. Epub 2023 Jul 28.
6
Structure and assembly of type VI secretion system cargo delivery vehicle.
Cell Rep. 2023 Jul 25;42(7):112781. doi: 10.1016/j.celrep.2023.112781. Epub 2023 Jul 7.
8
Cross-feeding in the gut microbiome: Ecology and mechanisms.
Cell Host Microbe. 2023 Apr 12;31(4):485-499. doi: 10.1016/j.chom.2023.03.016.
9
Resistant starch utilization by , the beneficial human gut bacteria.
Food Sci Biotechnol. 2023 Jan 27;32(4):441-452. doi: 10.1007/s10068-023-01253-w. eCollection 2023 Mar.
10
Inulin: properties and health benefits.
Food Funct. 2023 Apr 3;14(7):2948-2968. doi: 10.1039/d2fo01096h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验