Suppr超能文献

开发一个临床决策支持系统软件原型,以协助急诊科管理自残患者:PERMANENS 项目方案。

Developing a clinical decision support system software prototype that assists in the management of patients with self-harm in the emergency department: protocol of the PERMANENS project.

机构信息

Hospital del Mar Research Institute, Barcelona Biomedical Research Park (PRBB), Carrer Doctor Aiguader, 88, 08003, Barcelona, Spain.

CIBER of Epidemiology and Public Health, Carlos III Health Institute (CIBERESP, ISCIII), Madrid, Spain.

出版信息

BMC Psychiatry. 2024 Mar 20;24(1):220. doi: 10.1186/s12888-024-05659-6.

Abstract

BACKGROUND

Self-harm presents a significant public health challenge. Emergency departments (EDs) are crucial healthcare settings in managing self-harm, but clinician uncertainty in risk assessment may contribute to ineffective care. Clinical Decision Support Systems (CDSSs) show promise in enhancing care processes, but their effective implementation in self-harm management remains unexplored.

METHODS

PERMANENS comprises a combination of methodologies and study designs aimed at developing a CDSS prototype that assists clinicians in the personalized assessment and management of ED patients presenting with self-harm. Ensemble prediction models will be constructed by applying machine learning techniques on electronic registry data from four sites, i.e., Catalonia (Spain), Ireland, Norway, and Sweden. These models will predict key adverse outcomes including self-harm repetition, suicide, premature death, and lack of post-discharge care. Available registry data include routinely collected electronic health record data, mortality data, and administrative data, and will be harmonized using the OMOP Common Data Model, ensuring consistency in terminologies, vocabularies and coding schemes. A clinical knowledge base of effective suicide prevention interventions will be developed rooted in a systematic review of clinical practice guidelines, including quality assessment of guidelines using the AGREE II tool. The CDSS software prototype will include a backend that integrates the prediction models and the clinical knowledge base to enable accurate patient risk stratification and subsequent intervention allocation. The CDSS frontend will enable personalized risk assessment and will provide tailored treatment plans, following a tiered evidence-based approach. Implementation research will ensure the CDSS' practical functionality and feasibility, and will include periodic meetings with user-advisory groups, mixed-methods research to identify currently unmet needs in self-harm risk assessment, and small-scale usability testing of the CDSS prototype software.

DISCUSSION

Through the development of the proposed CDSS software prototype, PERMANENS aims to standardize care, enhance clinician confidence, improve patient satisfaction, and increase treatment compliance. The routine integration of CDSS for self-harm risk assessment within healthcare systems holds significant potential in effectively reducing suicide mortality rates by facilitating personalized and timely delivery of effective interventions on a large scale for individuals at risk of suicide.

摘要

背景

自残行为对公共健康构成了重大挑战。急诊科是管理自残行为的重要医疗保健场所,但临床医生在风险评估方面的不确定性可能导致护理效果不佳。临床决策支持系统(CDSS)在改善护理流程方面显示出前景,但它们在自残管理中的有效实施仍有待探索。

方法

PERMANENS 结合了多种方法和研究设计,旨在开发一个 CDSS 原型,帮助临床医生对急诊科自残患者进行个性化评估和管理。将通过在来自四个地点(西班牙加泰罗尼亚、爱尔兰、挪威和瑞典)的电子登记数据上应用机器学习技术来构建组合预测模型。这些模型将预测包括自残行为重复、自杀、过早死亡和缺乏出院后护理在内的关键不良结局。可用的登记数据包括常规收集的电子健康记录数据、死亡率数据和管理数据,并将使用 OMOP 通用数据模型进行协调,以确保术语、词汇和编码方案的一致性。一个基于系统评价临床实践指南的有效自杀预防干预措施的临床知识库将被开发,包括使用 AGREE II 工具对指南进行质量评估。CDSS 软件原型将包括一个集成预测模型和临床知识库的后端,以实现准确的患者风险分层和随后的干预分配。CDSS 前端将实现个性化风险评估,并根据分层循证方法提供量身定制的治疗计划。实施研究将确保 CDSS 的实际功能和可行性,并包括定期与用户咨询小组举行会议、进行混合方法研究以确定自残风险评估中当前未满足的需求,以及对 CDSS 原型软件进行小规模可用性测试。

讨论

通过开发拟议的 CDSS 软件原型,PERMANENS 的目标是标准化护理,增强临床医生的信心,提高患者满意度,并提高治疗依从性。在医疗保健系统中常规整合 CDSS 进行自残风险评估,通过大规模为有自杀风险的个人提供个性化和及时的有效干预措施,具有显著降低自杀死亡率的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f711/10956300/a1c6be2b6f0d/12888_2024_5659_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验