Suppr超能文献

脑血流动力学的数学建模及其对颅内压的影响。

Mathematical modelling of cerebral haemodynamics and their effects on ICP.

作者信息

Chu Ka Hing, Olakorede Ihsane, Beqiri Erta, Czosnyka Marek, Smielewski Peter

机构信息

Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK.

出版信息

Brain Spine. 2024 Feb 19;4:102772. doi: 10.1016/j.bas.2024.102772. eCollection 2024.

Abstract

INTRODUCTION

Electrical-equivalence mathematical models that integrate vascular and cerebrospinal fluid (CSF) compartments perform well in simulations of dynamic cerebrovascular variations and their transient effects on intracranial pressure (ICP). However, ICP changes due to sustained vascular diameter changes have not been comprehensively examined. We hypothesise that changes in cerebrovascular resistance (CVR) alter the resistance of the bulk flow of interstitial fluid (ISF).

RESEARCH QUESTION

We hypothesise that changes in CVR alter the resistance of the bulk flow of ISF, thus allowing simulations of ICP in response to sustained vascular diameter changes.

MATERIAL AND METHODS

A lumped parameter model with vascular and CSF compartments was constructed and converted into an electrical analogue. The flow and pressure responses to transient hyperaemic response test (THRT) and CSF infusion test (IT) were observed. Arterial blood pressure (ABP) was manipulated to simulate ICP plateau waves. The experiments were repeated with a modified model that included the ISF compartment.

RESULTS

Simulations of the THRT produced identical cerebral blood flow (CBF) responses. ICP generated by the new model reacted in a similar manner as the original model during ITs. Plateau pressure reached during ITs was however higher in the ISF model. Only the latter was successful in simulating the onset of ICP plateau waves in response to selective blood pressure manipulations.

DISCUSSION AND CONCLUSION

Our simulations highlighted the importance of including the ISF compartment, which provides mechanism explaining sustained haemodynamic influences on ICP. Consideration of such interactions enables accurate simulations of the cerebrovascular effects on ICP.

摘要

引言

整合血管和脑脊液(CSF)腔室的电等效数学模型在动态脑血管变化及其对颅内压(ICP)的瞬时影响模拟中表现良好。然而,由于血管直径持续变化导致的ICP变化尚未得到全面研究。我们假设脑血管阻力(CVR)的变化会改变间质液(ISF)总体流动的阻力。

研究问题

我们假设CVR的变化会改变ISF总体流动的阻力,从而能够模拟响应血管直径持续变化的ICP。

材料与方法

构建一个具有血管和CSF腔室的集总参数模型,并将其转换为电模拟模型。观察对瞬时充血反应试验(THRT)和脑脊液输注试验(IT)的流量和压力反应。通过操纵动脉血压(ABP)来模拟ICP平台波。使用包含ISF腔室的修改模型重复实验。

结果

THRT的模拟产生了相同的脑血流量(CBF)反应。新模型产生的ICP在IT期间的反应方式与原始模型相似。然而,ISF模型在IT期间达到的平台压力更高。只有后者成功模拟了响应选择性血压操纵的ICP平台波的起始。

讨论与结论

我们的模拟突出了包含ISF腔室的重要性,它提供了解释血流动力学对ICP持续影响的机制。考虑这种相互作用能够准确模拟脑血管对ICP的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d76/10951776/3cf8e6cc41dd/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验