Suppr超能文献

垃圾填埋场的生态毒理学影响:迈向风险评估、缓解政策和人工智能的角色。

Ecotoxicological impacts of landfill sites: Towards risk assessment, mitigation policies and the role of artificial intelligence.

机构信息

Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, CRK Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, CRK Campus, Lucknow 226008, Uttar Pradesh, India.

出版信息

Sci Total Environ. 2024 Jun 1;927:171804. doi: 10.1016/j.scitotenv.2024.171804. Epub 2024 Mar 20.

Abstract

Waste disposal in landfills remains a global concern. Despite technological developments, landfill leachate poses a hazard to ecosystems and human health since it acts as a secondary reservoir for legacy and emerging pollutants. This study provides a systematic and scientometric review of the nature and toxicity of pollutants generated by landfills and means of assessing their potential risks. Regarding human health, unregulated waste disposal and pathogens in leachate are the leading causes of diseases reported in local populations. Both in vitro and in vivo approaches have been employed in the ecotoxicological risk assessment of landfill leachate, with model organisms ranging from bacteria to birds. These studies demonstrate a wide range of toxic effects that reflect the complex composition of leachate and geographical variations in climate, resource availability and management practices. Based on bioassay (and other) evidence, categories of persistent chemicals of most concern include brominated flame retardants, per- and polyfluorinated chemicals, pharmaceuticals and alkyl phenol ethoxylates. However, the emerging and more general literature on microplastic toxicity suggests that these particles might also be problematic in leachate. Various mitigation strategies have been identified, with most focussing on improving landfill design or leachate treatment, developing alternative disposal methods and reducing waste volume through recycling or using more sustainable materials. The success of these efforts will rely on policies and practices and their enforcement, which is seen as a particular challenge in developing nations and at the international (and transboundary) level. Artificial intelligence and machine learning afford a wide range of options for evaluating and reducing the risks associated with leachates and gaseous emissions from landfills, and various approaches tested or having potential are discussed. However, addressing the limitations in data collection, model accuracy, real-time monitoring and our understanding of environmental impacts will be critical for realising this potential.

摘要

垃圾填埋场的废物处理仍然是一个全球性的问题。尽管技术有所发展,但垃圾渗滤液仍然对生态系统和人类健康构成威胁,因为它是遗留和新兴污染物的二次储存库。本研究对垃圾填埋场产生的污染物的性质和毒性及其评估其潜在风险的方法进行了系统和科学计量学的综述。就人类健康而言,未经监管的废物处理和渗滤液中的病原体是当地人群报告疾病的主要原因。在垃圾渗滤液的生态毒理学风险评估中,既采用了体外方法,也采用了体内方法,模型生物从细菌到鸟类不等。这些研究表明,存在广泛的毒性作用,反映了渗滤液的复杂组成以及气候、资源可用性和管理实践的地理差异。基于生物测定(和其他)证据,最受关注的持久性化学物质类别包括溴化阻燃剂、全氟和多氟化合物、药品和烷基酚乙氧基化物。然而,关于微塑料毒性的新兴和更普遍的文献表明,这些颗粒在渗滤液中也可能存在问题。已经确定了各种缓解策略,大多数策略侧重于改进垃圾填埋场设计或渗滤液处理、开发替代处置方法以及通过回收或使用更可持续的材料减少废物量。这些努力的成功将取决于政策和实践及其执行情况,这在发展中国家和国际(和跨界)层面被视为一个特别的挑战。人工智能和机器学习为评估和降低与垃圾渗滤液和垃圾填埋场气体排放相关的风险提供了广泛的选择,并且讨论了各种经过测试或具有潜力的方法。然而,解决数据收集、模型准确性、实时监测和我们对环境影响的理解方面的限制对于实现这一潜力至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验