Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Pharmacy, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710021, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; College of Life Sciences, Northwest University, Xi'an 710069, China.
Int J Biol Macromol. 2024 Apr;265(Pt 2):130917. doi: 10.1016/j.ijbiomac.2024.130917. Epub 2024 Mar 20.
Capsule polysaccharide is an important virulence factor of Klebsiella pneumoniae (K. pneumoniae), which protects bacteria against the host immune response. A promising therapeutic approach is using phage-derived depolymerases to degrade the capsular polysaccharide and expose and sensitize the bacteria to the host immune system. Here we determined the cryo-electron microscopy (cryo-EM) structures of a bacteriophage tail-spike protein against K. pneumoniae K64, ORF41 (K64-ORF41) and ORF41 in EDTA condition (K64-ORF41), at 2.37 Å and 2.50 Å resolution, respectively, for the first time. K64-ORF41 exists as a trimer and each protomer contains a β-helix domain including a right-handed parallel β-sheet helix fold capped at both ends, an insertion domain, and one β-sheet jellyroll domain. Moreover, our structural comparison with other depolymerases of K. pneumoniae suggests that the catalytic residues (Tyr528, His574 and Arg628) are highly conserved although the substrate of capsule polysaccharide is variable. Besides that, we figured out the important residues involved in the substrate binding pocket including Arg405, Tyr526, Trp550 and Phe669. This study establishes the structural and functional basis for the promising phage-derived broad-spectrum activity depolymerase therapeutics and effective CPS-degrading agents for the treatment of carbapenem-resistant K. pneumoniae K64 infections.
荚膜多糖是肺炎克雷伯菌(Klebsiella pneumoniae,K. pneumoniae)的重要毒力因子,它能保护细菌免受宿主免疫反应的影响。一种有前途的治疗方法是使用噬菌体衍生的解聚酶来降解荚膜多糖,从而使细菌暴露并敏化于宿主免疫系统。在这里,我们首次以 2.37Å 和 2.50Å 的分辨率分别确定了针对肺炎克雷伯菌 K64 的噬菌体尾刺蛋白的低温电子显微镜(cryo-EM)结构 ORF41(K64-ORF41)和 EDTA 条件下的 ORF41(K64-ORF41),K64-ORF41 以三聚体形式存在,每个蛋白单体包含一个β-螺旋结构域,包括一个右手平行β-折叠螺旋,两端带有帽状结构,一个插入结构域和一个β-片层果冻卷结构域。此外,我们与其他肺炎克雷伯菌解聚酶的结构比较表明,尽管荚膜多糖的底物是可变的,但催化残基(Tyr528、His574 和 Arg628)高度保守。此外,我们还确定了参与底物结合口袋的重要残基,包括 Arg405、Tyr526、Trp550 和 Phe669。这项研究为有前途的噬菌体衍生广谱活性解聚酶治疗奠定了结构和功能基础,并为治疗碳青霉烯类耐药肺炎克雷伯菌 K64 感染提供了有效的 CPS 降解剂。