Tewari Kshitij, Balyan Sonit, Jiang Changle, Robinson Brandon, Bhattacharyya Debangsu, Hu Jianli
Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States.
ACS Sustain Chem Eng. 2024 Mar 7;12(11):4718-4730. doi: 10.1021/acssuschemeng.4c00320. eCollection 2024 Mar 18.
Modern technologies transform biomass into commodity chemicals, biofuels, and solid charcoal, making it appear as a renewable resource rather than organic waste. The effectiveness of Mo, Fe, Co, and Ni metal catalysts was investigated during the gasification of lignocellulosic pinewood. The primary goal was to compare the performance of iron and nickel catalysts in the low- and high-pressure production of syngas from pinewood. This is the first study that has reported high-pressure gasification of pinewood without the use of an external gasifying agent, producing syngas containing hydrogen, carbon monoxide, and carbon dioxide along with considerable amounts of methane with or without a catalyst. Also, the same gasification at low pressures was compared. In this study, the iron catalyst produces syngas more efficiently at higher pressure and 800 °C, and contains 43 mol % H, 22 mol % CO, 26 mol % CH, and 8 mol % CO in comparison to the nickel catalyst. High pressure produces a large amount of methane too. The nickel catalyst produces higher syngas at low pressure and 850 °C, and contains 55 mol % H, 9 mol % CO, 5 mol % CH, and 30 mol % CO. Low-pressure gasification produces less amounts of CH and CO. Also, the H/CO ratio is ∼1.81 using the nickel catalyst at low pressures, which is good for utilizing syngas as a feedstock. These results highlight the importance of catalyst selection, reactor configuration, and operating circumstances in adjusting gasification product composition. The study's findings provide information about optimizing syngas production from pinewood, which is critical for the development of sustainable and efficient energy conversion technologies.
现代技术将生物质转化为商品化学品、生物燃料和固体木炭,使其看起来是一种可再生资源而非有机废物。在木质纤维素松木的气化过程中,对钼、铁、钴和镍金属催化剂的有效性进行了研究。主要目标是比较铁催化剂和镍催化剂在松木低压和高压合成气生产中的性能。这是第一项报道在不使用外部气化剂的情况下对松木进行高压气化的研究,无论有无催化剂,均可产生含有氢气、一氧化碳、二氧化碳以及大量甲烷的合成气。此外,还比较了相同条件下的低压气化。在本研究中,铁催化剂在800℃高压下能更高效地生产合成气,与镍催化剂相比,其合成气中含有43摩尔%的氢气、22摩尔%的一氧化碳、26摩尔%的甲烷和8摩尔%的二氧化碳。高压也会产生大量甲烷。镍催化剂在850℃低压下能产生更多的合成气,其合成气中含有55摩尔%的氢气、9摩尔%的一氧化碳、5摩尔%的甲烷和30摩尔%的二氧化碳。低压气化产生的甲烷和二氧化碳量较少。此外,在低压下使用镍催化剂时,氢/一氧化碳比约为1.81,这有利于将合成气用作原料。这些结果突出了催化剂选择、反应器配置和操作条件在调节气化产物组成方面的重要性。该研究结果为优化松木合成气生产提供了信息,这对可持续和高效能源转换技术的发展至关重要。