Suppr超能文献

利用机器学习探索巨大的化学空间,以寻找热力学稳定且机械坚固的MXenes。

Exploring the large chemical space in search of thermodynamically stable and mechanically robust MXenes machine learning.

作者信息

Park Jaejung, Kim Minseon, Kim Heekyu, Lee Jaejun, Lee Inhyo, Park Haesun, Lee Anna, Min Kyoungmin, Lee Seungchul

机构信息

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.

School of Mechanical Engineering, Soongsil University, Seoul, Republic of Korea.

出版信息

Phys Chem Chem Phys. 2024 Apr 3;26(14):10769-10783. doi: 10.1039/d3cp06337b.

Abstract

To effectively utilize MXenes, a family of two-dimensional materials, in various applications that include thermoelectric devices, semiconductors, and transistors, their thermodynamic and mechanical properties, which are closely related to their stability, must be understood. However, exploring the large chemical space of MXenes and verifying their stability using first-principles calculations are computationally expensive and inefficient. Therefore, this study proposes a machine learning (ML)-based high-throughput MXene screening framework to identify thermodynamically stable MXenes and determine their mechanical properties. A dataset of 23 857 MXenes with various compositions was used to validate this framework, and 48 MXenes were predicted to be stable by ML models in terms of heat of formation and energy above the convex hull. Among them, 45 MXenes were validated using density functional theory calculations, of which 23 MXenes, including TiCClBr and ZrNCl, have not been previously known for their stability, confirming the effectiveness of this framework. The in-plane stiffness, shear moduli, and Poisson's ratio of the 45 MXenes were observed to vary widely according to their constituent elements, ranging from 90.11 to 198.02 N m, 64.00 to 163.40 N m, and 0.19 to 0.58, respectively. MXenes with Group-4 transition metals and halogen surface terminations were shown to be both thermodynamically stable and mechanically robust, highlighting the importance of electronegativity difference between constituent elements. Structurally, a smaller volume per atom and minimum bond length were determined to be preferable for obtaining mechanically robust MXenes. The proposed framework, along with an analysis of these two properties of MXenes, demonstrates immense potential for expediting the discovery of stable and robust MXenes.

摘要

为了在包括热电器件、半导体和晶体管在内的各种应用中有效利用二维材料家族MXenes,必须了解与其稳定性密切相关的热力学和力学性能。然而,探索MXenes的庞大化学空间并使用第一性原理计算验证其稳定性在计算上既昂贵又低效。因此,本研究提出了一种基于机器学习(ML)的高通量MXene筛选框架,以识别热力学稳定的MXenes并确定其力学性能。使用包含各种成分的23857个MXenes数据集来验证该框架,通过ML模型预测有48个MXenes在生成热和凸包上方能量方面是稳定的。其中,45个MXenes使用密度泛函理论计算进行了验证,其中包括TiCClBr和ZrNCl在内的23个MXenes此前未知其稳定性,证实了该框架的有效性。观察到45个MXenes的面内刚度、剪切模量和泊松比根据其组成元素的不同而有很大差异,范围分别为90.11至198.02 N m、64.00至163.40 N m和0.19至0.58。具有第4族过渡金属和卤素表面终端的MXenes被证明既具有热力学稳定性又具有机械强度,突出了组成元素之间电负性差异的重要性。在结构上,确定每个原子较小的体积和最小键长对于获得机械强度高的MXenes是更可取的。所提出的框架以及对MXenes这两种性质的分析,显示了在加速发现稳定且坚固的MXenes方面的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验