Suppr超能文献

用于在广阔化学空间中加速搜索热力学稳定MXenes的主动学习框架

Active Learning Framework for Expediting the Search of Thermodynamically Stable MXenes in the Extensive Chemical Space.

作者信息

Park Jaejung, Lee Jongmok, Lee Jaejun, Min Kyoungmin, Park Haesun, Lee Seungchul

机构信息

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea.

出版信息

ACS Nano. 2024 Oct 29;18(43):29678-29688. doi: 10.1021/acsnano.4c08621. Epub 2024 Oct 14.

Abstract

MXenes possess a wide range of materials properties owing to their compositional and stoichiometric diversities, facilitating their utilization in various technological applications such as electrodes, catalysts, and supercapacitors. To explore their applicability, identification of thermodynamically stable and synthesizable MXenes should precede. The energy above the convex hull () calculated using the density functional theory (DFT) is a powerful scale to probe the thermodynamic stability. However, the high calculation cost of DFT limits the search space of unknown chemistry. To address this challenge, this study proposes an active learning (AL) framework consisting of a surrogate model and utility function for expeditious identification of thermodynamically stable MXenes in the extensive chemical space of 23,857 MXenes with compositional and stoichiometric diversity. Exploiting the fast inference speed and the capability of the AL framework to accurately identify stable MXenes, only 480 DFT calculations were required to identify 126 thermodynamically stable MXenes; among these, the stabilities of 89 MXenes have not been previously reported. In contrast, only two stable MXenes were identified among randomly selected 1693 MXenes, demonstrating the inefficiency of using only DFT calculations in exploring a large chemical space. The AL framework successfully minimized the number of DFT calculations while maximizing that of thermodynamically stable MXenes identified and can contribute to future studies in finding stable MXenes expeditiously.

摘要

由于其组成和化学计量的多样性,MXenes具有广泛的材料特性,这促进了它们在各种技术应用中的使用,如电极、催化剂和超级电容器。为了探索它们的适用性,应该先识别出热力学稳定且可合成的MXenes。使用密度泛函理论(DFT)计算的凸包之上的能量是探测热力学稳定性的有力尺度。然而,DFT的高计算成本限制了未知化学的搜索空间。为了应对这一挑战,本研究提出了一种主动学习(AL)框架,该框架由一个代理模型和效用函数组成,用于在23857种具有组成和化学计量多样性的MXenes的广泛化学空间中快速识别热力学稳定的MXenes。利用AL框架的快速推理速度和准确识别稳定MXenes的能力,仅需480次DFT计算就能识别出126种热力学稳定的MXenes;其中,89种MXenes的稳定性此前尚未报道。相比之下,在随机选择的1693种MXenes中仅识别出两种稳定的MXenes,这表明仅使用DFT计算在探索大型化学空间时效率低下。AL框架成功地减少了DFT计算的数量,同时最大化了识别出的热力学稳定MXenes的数量,并有助于未来快速找到稳定MXenes的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验