Suppr超能文献

下半身肌肉力量可预测城市战斗模拟中的表现。

Lower-body muscular power predicts performance on urban combat simulation.

作者信息

Sankari Matias, Vaara Jani P, Pihlainen Kai, Ojanen Tommi, Kyröläinen Heikki

机构信息

Department of Leadership and Military Pedagogy, National Defence University, Helsinki, Finland.

Training Division of Defence Command, Helsinki, Finland.

出版信息

Work. 2024;77(4):1331-1340. doi: 10.3233/WOR-230239.

Abstract

BACKGROUND

Military operations in urban environments requires faster movements and therefore may place greater demands on soldier strength and anaerobic ability.

OBJECTIVE

The aim was to study how physical fitness and body composition are associated with occupational test for urban combat soldiers before and after a 5-day military field exercise (MFE).

METHODS

Twenty-six conscripts (age = 20±1 yrs.) volunteered, of which thirteen completed the study. Occupational performance was determined by using the newly developed Urban Combat Simulation test (UCS); which included 50-m sprinting, moving a truck tire (56 kg) 2 meters with a sledgehammer, a 12-m kettlebell carry (2×20 kg) up the stairs with a 3-m ascent, 4-time sandbag lifts (20 kg) with obstacle crossing, and a 20-m mannequin (85 kg) drag. Aerobic and muscle fitness, as well as anaerobic capacity were measured, and, body composition was assessed with multifrequency bioimpedance analysis.

RESULTS

The UCS performance correlated significantly with standing long jump performance, as well as lower and upper body maximal strength before (r = -0.56 to -0.66) and after (r = -0.59 to -0.68) MFE, and, with body mass and FFM before (r = -0.81 to -0.83) and after (r = -0.86 to -0.91) MFE. In the regression analyses, fat free mass (R2 = 0.50, p = 0.01) and counter movement jump in combat load (R2 = 0.46, p = 0.009) most strongly explained the UCS performance.

CONCLUSION

This study demonstrated that muscle mass and lower body explosive force production together with maximal strength are key fitness components related to typical urban combat soldiers' military tasks. Physical training developing these components are recommended.

摘要

背景

城市环境中的军事行动需要更快的行动速度,因此可能对士兵的力量和无氧能力提出更高要求。

目的

旨在研究在为期5天的军事野外演习(MFE)前后,城市作战士兵的体能和身体成分与职业测试之间的关联。

方法

26名应征入伍者(年龄=20±1岁)自愿参与,其中13人完成了研究。职业表现通过使用新开发的城市作战模拟测试(UCS)来确定;该测试包括50米短跑、用大锤移动一个卡车轮胎(56公斤)2米、手提两个20公斤的壶铃爬12米楼梯并上升3米、4次提起20公斤沙袋并穿越障碍物,以及拖拽一个85公斤的人体模型20米。测量了有氧和肌肉体能以及无氧能力,并通过多频生物电阻抗分析评估了身体成分。

结果

UCS表现与立定跳远成绩以及MFE前后的下肢和上肢最大力量显著相关(r=-0.56至-0.66)以及(r=-0.59至-0.68),并且与MFE前后的体重和去脂体重显著相关(r=-0.81至-0.83)以及(r=-0.86至-0.91)。在回归分析中,去脂体重(R2=0.50,p=0.01)和战斗负重下的反向移动跳(R2=0.46,p=0.009)最能有力地解释UCS表现。

结论

本研究表明,肌肉质量、下肢爆发力以及最大力量是与典型城市作战士兵军事任务相关的关键体能组成部分。建议进行发展这些组成部分的体育训练。

相似文献

1
Lower-body muscular power predicts performance on urban combat simulation.
Work. 2024;77(4):1331-1340. doi: 10.3233/WOR-230239.
3
Associations of Physical Fitness and Body Composition Characteristics With Simulated Military Task Performance.
J Strength Cond Res. 2018 Apr;32(4):1089-1098. doi: 10.1519/JSC.0000000000001921.
4
Twelve weeks of concurrent resistance and interval training improves military occupational task performance in men and women.
Eur J Sport Sci. 2023 Dec;23(12):2411-2424. doi: 10.1080/17461391.2023.2239752. Epub 2023 Jul 30.
5
Physiological Demands and Characteristics of Movement During Simulated Combat.
Mil Med. 2023 Nov 3;188(11-12):3496-3505. doi: 10.1093/milmed/usac163.
6
Physical Fitness Determinants of a Military Casualty Evacuation Test.
Mil Med. 2025 Feb 27;190(3-4):e790-e796. doi: 10.1093/milmed/usae414.
7
Physical Fitness Predictors of a Warrior Task Simulation Test.
J Strength Cond Res. 2018 Sep;32(9):2562-2568. doi: 10.1519/JSC.0000000000002607.
8
Fight load index and body composition are most associated with combat fitness in female Marines.
J Sci Med Sport. 2019 Apr;22(4):494-499. doi: 10.1016/j.jsams.2018.10.014. Epub 2018 Nov 6.
9
Military Body Composition Standards and Physical Performance: Historical Perspectives and Future Directions.
J Strength Cond Res. 2022 Dec 1;36(12):3551-3561. doi: 10.1519/JSC.0000000000004142. Epub 2021 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验