Suppr超能文献

利用高能水合位点发现具有细胞抗病毒活性的 SARS-CoV-2 主蛋白酶强效肽醛抑制剂。

Exploiting high-energy hydration sites for the discovery of potent peptide aldehyde inhibitors of the SARS-CoV-2 main protease with cellular antiviral activity.

机构信息

Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA 92121, United States.

Schrödinger, Inc, 1540 Broadway, New York, NY 10036, United States.

出版信息

Bioorg Med Chem. 2024 Apr 1;103:117577. doi: 10.1016/j.bmc.2023.117577. Epub 2024 Jan 5.

Abstract

Small-molecule antivirals that prevent the replication of the SARS-CoV-2 virus by blocking the enzymatic activity of its main protease (Mpro) are and will be a tenet of pandemic preparedness. However, the peptidic nature of such compounds often precludes the design of compounds within favorable physical property ranges, limiting cellular activity. Here we describe the discovery of peptide aldehyde Mpro inhibitors with potent enzymatic and cellular antiviral activity. This structure-activity relationship (SAR) exploration was guided by the use of calculated hydration site thermodynamic maps (WaterMap) to drive potency via displacement of waters from high-energy sites. Thousands of diverse compounds were designed to target these high-energy hydration sites and then prioritized for synthesis by physics- and structure-based Free-Energy Perturbation (FEP+) simulations, which accurately predicted biochemical potencies. This approach ultimately led to the rapid discovery of lead compounds with unique SAR that exhibited potent enzymatic and cellular activity with excellent pan-coronavirus coverage.

摘要

小分子抗病毒药物通过阻断 SARS-CoV-2 病毒的主要蛋白酶(Mpro)的酶活性来阻止病毒复制,这将是大流行防范的一个原则。然而,这类化合物的肽性质通常排除了在有利的物理性质范围内设计化合物的可能性,从而限制了细胞活性。在这里,我们描述了具有强大酶和细胞抗病毒活性的肽醛 Mpro 抑制剂的发现。这种构效关系(SAR)探索是通过使用计算水合位点热力学图(WaterMap)来驱动通过从高能位点置换水来提高效力。设计了数千种不同的化合物来靶向这些高能水合位点,然后通过基于物理和结构的自由能微扰(FEP+)模拟进行优先合成,该模拟可以准确预测生化效力。这种方法最终导致了具有独特 SAR 的先导化合物的快速发现,这些化合物表现出强大的酶和细胞活性,对多种冠状病毒具有极好的覆盖范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验