Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA.
Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA-94720, USA.
Chembiochem. 2023 Jun 1;24(11):e202300116. doi: 10.1002/cbic.202300116. Epub 2023 May 3.
While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly "druggable" or relatively easy-to-drug target is the coronavirus Main Protease (3CL or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.
虽然目前正在部署疫苗和抗病毒药物来应对当前的 SARS-CoV-2 大流行,但我们还需要其他抗病毒疗法,不仅要有效对抗 SARS-CoV-2 及其变体,还要对抗未来的冠状病毒。所有冠状病毒的基因组都比较相似,这为开发针对所有冠状病毒都有效的抗病毒疗法提供了潜在的可利用的突破口。在所有冠状病毒编码的各种基因和蛋白质中,一种特别“可成药”或相对容易成药的靶标是冠状病毒主要蛋白酶(3CL 或 Mpro),这是一种参与切割由病毒基因组翻译的长肽的酶,将其切割成单个蛋白质成分,然后组装成病毒,从而使病毒在细胞中复制。用小分子抗病毒药物抑制 Mpro 可以有效地阻止病毒复制的能力,从而提供治疗益处。在这项研究中,我们利用基于活性的蛋白质谱(ABPP)的化学生物学方法,发现并进一步优化了针对 SARS-CoV-2 Mpro 的基于半胱氨酸反应性吡唑啉的共价抑制剂。基于结构的药物化学和带有氯乙酰胺或乙烯磺酰胺半胱氨酸反应性弹头的二取代和三取代吡唑啉的模块化合成,使我们能够快速探索构效关系(SAR),得到了不仅针对 SARS-CoV-2,而且针对许多其他冠状病毒的 Mpro 的纳摩尔效力抑制剂。我们的研究强调了有希望的化学骨架,这些骨架可能有助于未来的泛冠状病毒抑制剂。