Tang Xiaohua, Zhang Tianjiao, Chen Weijie, Chen Haiyang, Zhang Zhichao, Chen Xining, Gu Hao, Kang Shuaiqing, Han Chuanshuai, Xu Tingting, Cao Jianlei, Zheng Jialei, Ou Xuemei, Li Yaowen, Li Yongfang
Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.
Adv Mater. 2024 Jun;36(25):e2400218. doi: 10.1002/adma.202400218. Epub 2024 Mar 29.
Perovskite solar cells (pero-SCs) are highly unstable even under trace water. Although the blanket encapsulation (BE) strategy applied in the industry can effectively block moisture invasion, the commercial UV-curable adhesives (UVCAs) for BE still trigger power conversion efficiency deterioration, and the degradation mechanism remains unknown. For the first time, the functions of commercial UVCAs are revealed in BE-processed pero-SCs, where the small-sized monomer easily permeates to the perovskite surface, forming an insulating barrier to block charge extraction, while the high-polarity moiety can destroy perovskite lattice. To solve these problems, a macromer, named PIBA is carefully designed, by grafting two acrylate terminal groups on the highly gastight polyisobutylene and realizes an increased molecular diameter as well as avoided high-polarity groups. The PIBA macromer can stabilize on pero-SCs and then sufficiently crosslink, forming a compact and stable network under UV light without sacrificing device performance during the BE process. The resultant BE devices show negligible efficiency loss after storage at 85% relative humidity for 2000 h. More importantly, these devices can even reach ISO 20653:2013 Degrees of protection IPX7 standard when immersed in one-meter-deep water. This BE strategy shows good universality in enhancing the moisture stability of pero-SCs, irrespective of the perovskite composition or device structure.
即使在痕量水的环境下,钙钛矿太阳能电池(pero-SCs)也极不稳定。尽管工业上应用的全覆盖封装(BE)策略能有效阻挡湿气侵入,但用于BE的商用紫外光固化胶粘剂(UVCAs)仍会引发功率转换效率的下降,且降解机制尚不明确。首次在采用BE工艺的pero-SCs中揭示了商用UVCAs的作用,即小分子单体容易渗透到钙钛矿表面,形成绝缘屏障以阻止电荷提取,而高极性部分会破坏钙钛矿晶格。为解决这些问题,精心设计了一种名为PIBA的大分子单体,通过在高度气密的聚异丁烯上接枝两个丙烯酸酯端基,实现了分子直径的增大以及高极性基团的避免。PIBA大分子单体能够在pero-SCs上稳定下来,然后充分交联,在紫外光下形成致密且稳定的网络,同时在BE工艺过程中不会牺牲器件性能。所得的BE器件在85%相对湿度下储存2000小时后,效率损失可忽略不计。更重要的是,这些器件浸入一米深的水中时甚至能达到ISO 20653:2013防护等级IPX7标准。这种BE策略在提高pero-SCs的湿气稳定性方面显示出良好的通用性,与钙钛矿组成或器件结构无关。