Área de Química Física , Universidad Pablo de Olavide , Seville E-41013 , Spain.
Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla) , Seville E-41092 , Spain.
ACS Appl Mater Interfaces. 2018 Apr 11;10(14):11587-11594. doi: 10.1021/acsami.7b17824. Epub 2018 Mar 30.
A compromise between high power conversion efficiency and long-term stability of hybrid organic-inorganic metal halide perovskite solar cells is necessary for their outdoor photovoltaic application and commercialization. Herein, a method to improve the stability of perovskite solar cells under water and moisture exposure consisting of the encapsulation of the cell with an ultrathin plasma polymer is reported. The deposition of the polymer is carried out at room temperature by the remote plasma vacuum deposition of adamantane powder. This encapsulation method does not affect the photovoltaic performance of the tested devices and is virtually compatible with any device configuration independent of the chemical composition. After 30 days under ambient conditions with a relative humidity (RH) in the range of 35-60%, the absorbance of encapsulated perovskite films remains practically unaltered. The deterioration in the photovoltaic performance of the corresponding encapsulated devices also becomes significantly delayed with respect to devices without encapsulation when vented continuously with very humid air (RH > 85%). More impressively, when encapsulated solar devices were immersed in liquid water, the photovoltaic performance was not affected at least within the first 60 s. In fact, it has been possible to measure the power conversion efficiency of encapsulated devices under operation in water. The proposed method opens up a new promising strategy to develop stable photovoltaic and photocatalytic perovskite devices.
为了实现混合有机-无机卤化金属钙钛矿太阳能电池的户外光伏应用和商业化,需要在高效率能量转换和长期稳定性之间取得平衡。本文报道了一种通过在钙钛矿电池外包裹一层超薄等离子体聚合物来提高钙钛矿太阳能电池在水和湿气环境下稳定性的方法。聚合物的沉积是在室温下通过远程等离子体真空沉积金刚烷粉末完成的。这种封装方法不会影响测试器件的光伏性能,并且与任何器件结构都几乎兼容,无论其化学成分如何。在相对湿度(RH)为 35-60%的环境条件下放置 30 天后,封装的钙钛矿薄膜的吸光度几乎没有变化。与没有封装的器件相比,封装器件的光伏性能恶化也显著延迟,当用非常潮湿的空气(RH>85%)连续通风时更是如此。更令人印象深刻的是,当封装的太阳能器件浸入液态水中时,至少在最初的 60 秒内,其光伏性能没有受到影响。实际上,已经可以在水下运行的情况下测量封装器件的功率转换效率。该方法为开发稳定的光伏和光催化钙钛矿器件开辟了一条新的有前途的策略。